Step 1: Use the property of diagonals in a parallelogram.
In any parallelogram, diagonals bisect each other.
Thus, the midpoint of diagonal \(PR\) is the same as the midpoint of diagonal \(SQ\).
Step 2: Find the midpoint of diagonal \(PR\).
Coordinates:
\[
P(-3, -2),\quad R(9, 1).
\]
Midpoint:
\[
M = \left( \frac{-3+9}{2},\, \frac{-2+1}{2} \right)
= (3, -\tfrac{1}{2}).
\]
Step 3: Find coordinates of point \(S\).
Let \(S = (x, y)\).
Given midpoint of \(SQ\) is also \((3, -\tfrac12)\), and \(Q = (1, -5)\).
Using midpoint formula:
\[
\frac{x + 1}{2} = 3 \quad\Rightarrow\quad x + 1 = 6 \Rightarrow x = 5,
\]
\[
\frac{y - 5}{2} = -\tfrac12 \quad\Rightarrow\quad y - 5 = -1 \Rightarrow y = 4.
\]
Thus,
\[
S = (5, 4).
\]
Step 4: Equation of diagonal \(SQ\).
Points on line: \(S(5,4)\) and \(Q(1,-5)\).
Slope:
\[
m = \frac{-5 - 4}{1 - 5}
= \frac{-9}{-4}
= \frac{9}{4}.
\]
Using point-slope form at \(S(5,4)\):
\[
y - 4 = \frac{9}{4}(x - 5).
\]
Multiply through:
\[
4y - 16 = 9x - 45,
\]
\[
9x - 4y - 29 = 0.
\]
Step 5: Find intersection with x-axis.
At the x-axis, \(y = 0\). Substitute into the line equation:
\[
9a - 0 - 29 = 0
\Rightarrow 9a = 29
\Rightarrow a = \frac{29}{9}.
\]
Thus,
\[
\boxed{\frac{29}{9}}.
\]