The coulombian force (\(F_c\)) is given by:
\[ F_c = \frac{k Q_1 Q_2}{r^2} = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{r^2} \]
The gravitational force (\(F_g\)) is given by:
\[ F_g = \frac{G m_1 m_2}{r^2} = \frac{6.67 \times 10^{-11} \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-27}}{r^2} \]
The ratio of the forces is:
\[ \frac{F_c}{F_g} \approx 0.23 \times 10^{40} \approx 2.3 \times 10^{39} \]
Therefore, the answer is approximately \(10^{39}\).
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is:
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Let $x_1, x_2, \ldots, x_{10}$ be ten observations such that
\[\sum_{i=1}^{10} (x_i - 2) = 30, \quad \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \quad \beta > 2\]
and their variance is $\frac{4}{5}$. If $\mu$ and $\sigma^2$ are respectively the mean and the variance of
\[ 2(x_1 - 1) + 4\beta, 2(x_2 - 1) + 4\beta, \ldots, 2(x_{10} - 1) + 4\beta\]
then $\frac{\beta \mu}{\sigma^2}$ is equal to: