The coulombian force (\(F_c\)) is given by:
\[ F_c = \frac{k Q_1 Q_2}{r^2} = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{r^2} \]
The gravitational force (\(F_g\)) is given by:
\[ F_g = \frac{G m_1 m_2}{r^2} = \frac{6.67 \times 10^{-11} \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-27}}{r^2} \]
The ratio of the forces is:
\[ \frac{F_c}{F_g} \approx 0.23 \times 10^{40} \approx 2.3 \times 10^{39} \]
Therefore, the answer is approximately \(10^{39}\).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.