The distance of closest approach is given by:
\[r_{\text{min}} = \frac{4KZe^2}{mv^2}.\]
Rearranging for velocity:
\[v = \sqrt{\frac{4KZe^2}{mr_{\text{min}}}}.\]
Substitute values:
\[v = \sqrt{\frac{4 \cdot 9 \cdot 10^9 \cdot 80 \cdot (1.6 \times 10^{-19})^2}{6.72 \times 10^{-27} \cdot 4.5 \times 10^{-14}}}.\]
Simplify:
\[v = 156 \times 10^5 \, \text{m/s}.\]
Final Answer:
$156 \times 10^5 \, \text{m/s}$.