We are given that $\tan A = \frac{1}{\sqrt{3}}$. This implies:
\[
\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{\sqrt{3}} \Rightarrow \text{opposite} = 1, \quad \text{adjacent} = \sqrt{3}.
\]
Using the Pythagorean theorem, we can find the hypotenuse:
\[
\text{hypotenuse} = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.
\]
Thus, in triangle ABC:
\[
\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{2}, \quad \cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2}.
\]
Next, we need to find $\sin A \cos B + \cos A \sin B$. By the sine addition formula:
\[
\sin(A + B) = \sin A \cos B + \cos A \sin B
\]
Since $\angle C = 90^\circ$, we know that:
\[
A + B = 90^\circ \Rightarrow \sin(A + B) = \sin 90^\circ = 1.
\]
Thus, we have:
\[
\sin A \cos B + \cos A \sin B = 1.
\]
Step 2: Conclusion.
Therefore, the value of the expression is $1$. So, the correct answer is (C).