In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10–3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?
Area of each plate of the parallel plate capacitor, A = 6 × 10−3 m2
Distance between the plates, d = 3 mm = 3 × 10−3 m Supply voltage, V = 100 V
Capacitance C of a parallel plate capacitor is given by, \(C =\frac{E0A}{D}\)
Where, ε0= Permittivity of free space = 8.854 × 10−12 N−1 m−2 C−2
\(C = \frac{8.854×10×6×10^{-3}}{3×10^-3} = 17.71 × 10^{-12}F = 17.71 pF\)
So, charge on each plate of the capacitor
q = VC = 100 × 17.71 × 10-12 C = 1.771 × 10-9C
Therefore, capacitance of the capacitor is 17.71 pF and charge on each plate is 1.771 × 10−9 C.
Find work done in bringing charge q = 3nC from infinity to point A as shown in the figure : 
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily calculate the total capacitance.
Read Also: Combination of Capacitors
When one terminal of a capacitor is connected to the terminal of another capacitors , called series combination of capacitors.
Capacitors can be connected in two types which are in series and in parallel. If capacitors are connected one after the other in the form of a chain then it is in series. In series, the capacitance is less.
When the capacitors are connected between two common points they are called to be connected in parallel.
When the plates are connected in parallel the size of the plates gets doubled, because of that the capacitance is doubled. So in a parallel combination of capacitors, we get more capacitance.
Read More: Types of Capacitors