In a nuclear fission process, a high mass nuclide (A ≈ 236) with binding energy 7.6 MeV/Nucleon dissociated into middle mass nuclides (A ≈ 118), having binding energy of 8.6 MeV/Nucleon. The energy released in the process would be ____ MeV.
Energy released \( Q = \text{BE}_{\text{Product}} - \text{BE}_{\text{Reactant}} \):
\[ Q = 2 \times 118 \times 8.6 - 236 \times 7.6 \]
\[ = 236 \times (8.6 - 7.6) = 236 \, \text{MeV} \]
A small bob A of mass m is attached to a massless rigid rod of length 1 m pivoted at point P and kept at an angle of 60° with vertical. At 1 m below P, bob B is kept on a smooth surface. If bob B just manages to complete the circular path of radius R after being hit elastically by A, then radius R is_______ m :
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.