Step1. Path Difference Condition for Minima: - For a dark fringe (minima) at P, the path difference should be:
\[ 2\sqrt{D^2 + d^2} - 2D = \frac{\lambda}{2} \]
- Rearrange:
\[ \sqrt{D^2 + d^2} - D = \frac{\lambda}{4} \]
- Therefore:
\[ \sqrt{D^2 + d^2} = D + \frac{\lambda}{4} \]
Step 2. Square Both Sides:
\[ D^2 + d^2 = D^2 + D\lambda + \frac{\lambda^2}{16} \]
- Simplify to solve for d:
\[ d^2 = D\lambda + \frac{\lambda^2}{16} \]
Step 3. Substitute Given Values: - \(\lambda = 400 \, \text{nm} = 400 \times 10^{-9} \, \text{m}\), \(D = 0.2 \, \text{m}\)
\[ d^2 = 0.2 \times 400 \times 10^{-9} + \frac{(400 \times 10^{-9})^2}{16} \]
- Calculate:
\[ d^2 \approx 4 \times 10^{-8} \, \text{m}^2 \]
\[ d \approx 2 \times 10^{-4} \, \text{m} = 0.20 \, \text{mm} \]
So, the correct answer is: \(d = 0.20 \, \text{mm}\)
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: