\(E°_{cell} = E°_{cathode} - E°_{anode}\)
\(E°_{cell}= 0.77 – 0.54\)
\(E°_{cell}= 0.23\ V\)
\(E°_{cell}= 23×10^{–2} V\)
So, the answer is \(23\).
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
\(Pt(s) ∣ H2(g)(1atm) ∣ H+(aq, [H+]=1)\, ∥\, Fe3+(aq), Fe2+(aq) ∣ Pt(s)\)
Given\( E^∘_{Fe^{3+}Fe^{2+}}\)\(=0.771V\) and \(E^∘_{H^{+1/2}H_2}=0\,V,T=298K\)
If the potential of the cell is 0.712V, the ratio of concentration of \(Fe2+\) to \(Fe3+\) is
Match List-I with List-II.
Choose the correct answer from the options given below :
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.