The total number of ways to pick 2 balls from 10 is \( \binom{10}{2} = 45 \).
The number of favorable outcomes (picking 2 white balls) is \( \binom{6}{2} = 15 \). Thus, the probability is \( \frac{15}{45} = \frac{1}{3} \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 