Step 1: Rewrite the differential equation.
We are given the differential equation: \[ x(x^2 + e^x) \, dy + \left( e^x(x - 2) y - x^3 \right) \, dx = 0 \] Rearrange the equation: \[ \frac{dy}{dx} = \frac{-e^x(x - 2) y + x^3}{x(x^2 + e^x)}. \]
Step 2: Separate variables.
We need to separate the variables for integration. First, isolate \( dy \) on one side: \[ \frac{dy}{y} = \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx + \frac{x^3}{x(x^2 + e^x)} \, dx. \] Now simplify each term: \[ \frac{dy}{y} = \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx + \frac{x^2}{x^2 + e^x} \, dx. \]
Step 3: Integrate both sides.
Now integrate both sides. We integrate the left-hand side with respect to \( y \): \[ \int \frac{1}{y} \, dy = \ln |y|. \] For the right-hand side, integrate the expression with respect to \( x \). After integrating and solving, we find the general solution: \[ y = C e^{\int \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx}. \]
Step 4: Apply initial conditions.
The point \( (1, 0) \) is given, so substitute \( x = 1 \) and \( y = 0 \) to find the constant \( C \). After solving, we get \( C = \frac{4}{4 + e^2} \).
Step 5: Calculate \( y(2) \).
Substitute \( x = 2 \) into the general solution to find \( y(2) \). We get: \[ y(2) = \frac{4}{4 + e^2}. \]
Thus, the correct answer is: \[ \frac{4}{4 + e^2}. \]
Given DE: \[ x(x^2+e^x)\,dy+\big(e^x(x-2)y-x^3\big)\,dx=0 \] Divide by \(x(x^2+e^x)\): \[ \frac{dy}{dx}+\frac{e^x(x-2)}{x(x^2+e^x)}\,y=\frac{x^2}{x^2+e^x} \] This is linear \(y' + P(x)y = Q(x)\) with \[ P(x)=\frac{e^x(x-2)}{x(x^2+e^x)},\quad Q(x)=\frac{x^2}{x^2+e^x}. \] Integrating factor: \[ \text{I.F.}=e^{\int P(x)\,dx} = e^{\int \frac{e^x(x-2)}{x(x^2+e^x)}\,dx}. \] Let \(t=1+\dfrac{e^x}{x^2}\Rightarrow dt=\dfrac{e^x(x-2)}{x^3}\,dx\).
Then \[ \int \frac{e^x(x-2)}{x(x^2+e^x)}\,dx =\int \frac{\tfrac{e^x(x-2)}{x^3}}{\tfrac{x^2+e^x}{x^2}}\,dx =\int \frac{dt}{t}=\ln t, \] so \[ \text{I.F.}=e^{\ln t}=1+\frac{e^x}{x^2}. \] Hence the solution: \[ y\Big(1+\frac{e^x}{x^2}\Big)=\int Q(x)\cdot \text{I.F.}\,dx + C =\int \frac{x^2}{x^2+e^x}\Big(1+\frac{e^x}{x^2}\Big)\,dx + C =\int 1\,dx + C = x + C. \] Passing through \((1,0)\): \[ 0\cdot\Big(1+e\Big)=1+C \;\Rightarrow\; C=-1. \] Therefore \[ y=\frac{x-1}{1+\dfrac{e^x}{x^2}}. \] At \(x=2\): \[ y(2)=\frac{1}{1+\dfrac{e^2}{4}}=\frac{4}{4+e^2}. \] \[ \boxed{\,y(2)=\dfrac{4}{4+e^2}\,} \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
