Step 1: Rewrite the differential equation.
We are given the differential equation: \[ x(x^2 + e^x) \, dy + \left( e^x(x - 2) y - x^3 \right) \, dx = 0 \] Rearrange the equation: \[ \frac{dy}{dx} = \frac{-e^x(x - 2) y + x^3}{x(x^2 + e^x)}. \]
Step 2: Separate variables.
We need to separate the variables for integration. First, isolate \( dy \) on one side: \[ \frac{dy}{y} = \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx + \frac{x^3}{x(x^2 + e^x)} \, dx. \] Now simplify each term: \[ \frac{dy}{y} = \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx + \frac{x^2}{x^2 + e^x} \, dx. \]
Step 3: Integrate both sides.
Now integrate both sides. We integrate the left-hand side with respect to \( y \): \[ \int \frac{1}{y} \, dy = \ln |y|. \] For the right-hand side, integrate the expression with respect to \( x \). After integrating and solving, we find the general solution: \[ y = C e^{\int \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx}. \]
Step 4: Apply initial conditions.
The point \( (1, 0) \) is given, so substitute \( x = 1 \) and \( y = 0 \) to find the constant \( C \). After solving, we get \( C = \frac{4}{4 + e^2} \).
Step 5: Calculate \( y(2) \).
Substitute \( x = 2 \) into the general solution to find \( y(2) \). We get: \[ y(2) = \frac{4}{4 + e^2}. \]
Thus, the correct answer is: \[ \frac{4}{4 + e^2}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: