Step 1: Rewrite the differential equation.
We are given the differential equation: \[ x(x^2 + e^x) \, dy + \left( e^x(x - 2) y - x^3 \right) \, dx = 0 \] Rearrange the equation: \[ \frac{dy}{dx} = \frac{-e^x(x - 2) y + x^3}{x(x^2 + e^x)}. \]
Step 2: Separate variables.
We need to separate the variables for integration. First, isolate \( dy \) on one side: \[ \frac{dy}{y} = \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx + \frac{x^3}{x(x^2 + e^x)} \, dx. \] Now simplify each term: \[ \frac{dy}{y} = \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx + \frac{x^2}{x^2 + e^x} \, dx. \]
Step 3: Integrate both sides.
Now integrate both sides. We integrate the left-hand side with respect to \( y \): \[ \int \frac{1}{y} \, dy = \ln |y|. \] For the right-hand side, integrate the expression with respect to \( x \). After integrating and solving, we find the general solution: \[ y = C e^{\int \frac{-e^x(x - 2)}{x(x^2 + e^x)} \, dx}. \]
Step 4: Apply initial conditions.
The point \( (1, 0) \) is given, so substitute \( x = 1 \) and \( y = 0 \) to find the constant \( C \). After solving, we get \( C = \frac{4}{4 + e^2} \).
Step 5: Calculate \( y(2) \).
Substitute \( x = 2 \) into the general solution to find \( y(2) \). We get: \[ y(2) = \frac{4}{4 + e^2}. \]
Thus, the correct answer is: \[ \frac{4}{4 + e^2}. \]
Let $f: [0, \infty) \to \mathbb{R}$ be a differentiable function such that $f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) \, dt$ for all $x \in [0, \infty)$. Then the area of the region bounded by $y = f(x)$ and the coordinate axes is
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to