In the binomial expansion of \( (1 + x)^{2n - 1} \), the general term is given by: \[ T_k = \binom{2n-1}{k} x^k. \] The 30th term corresponds to \( T_{30} \), and the 12th term corresponds to \( T_{12} \). We are given that \( 2A = 5B \), where \( A \) and \( B \) are the coefficients of the 30th and 12th terms respectively. Solving the equation \( 2A = 5B \), we can find the value of \( n \).
Final Answer: \( n = 21 \).
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.