In the binomial expansion of \( (1 + x)^{2n - 1} \), the general term is given by: \[ T_k = \binom{2n-1}{k} x^k. \] The 30th term corresponds to \( T_{30} \), and the 12th term corresponds to \( T_{12} \). We are given that \( 2A = 5B \), where \( A \) and \( B \) are the coefficients of the 30th and 12th terms respectively. Solving the equation \( 2A = 5B \), we can find the value of \( n \).
Final Answer: \( n = 21 \).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is