In the binomial expansion of \( (1 + x)^{2n - 1} \), the general term is given by: \[ T_k = \binom{2n-1}{k} x^k. \] The 30th term corresponds to \( T_{30} \), and the 12th term corresponds to \( T_{12} \). We are given that \( 2A = 5B \), where \( A \) and \( B \) are the coefficients of the 30th and 12th terms respectively. Solving the equation \( 2A = 5B \), we can find the value of \( n \).
Final Answer: \( n = 21 \).