Recognize that the expression inside the inverse tangent resembles the identity: \[ \tan(2\theta(A) = \frac{2\tan\theta}{1 - \tan^2\theta} \]
Let \( \theta = \tan^{-1}(x) \), then \( \tan(2\theta A)) = \frac{2x}{1 - x^2} \)
So, \[ y = \tan^{-1}\left( \frac{2x}{1 - x^2} \right) = \tan^{-1}(\tan(2\tan^{-1}x)) = 2\tan^{-1}(x) \]
Differentiating both sides: \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}x) = 2 \cdot \frac{1}{1 + x^2} \]
To solve the problem, we need to find the derivative of the function:
$ y = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) $
1. Let:
$ u = \frac{2x}{1 - x^2} $
2. Derivative of $y$ using chain rule:
$ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} $
3. Calculate $u^2$:
$ u^2 = \left(\frac{2x}{1 - x^2}\right)^2 = \frac{4x^2}{(1 - x^2)^2} $
4. Calculate $\frac{du}{dx}$ using quotient rule:
$ u = \frac{2x}{1 - x^2} $
Numerator $N = 2x$, Denominator $D = 1 - x^2$
$ \frac{du}{dx} = \frac{D \cdot \frac{dN}{dx} - N \cdot \frac{dD}{dx}}{D^2} = \frac{(1 - x^2)(2) - (2x)(-2x)}{(1 - x^2)^2} $
$ = \frac{2(1 - x^2) + 4x^2}{(1 - x^2)^2} = \frac{2 + 2x^2}{(1 - x^2)^2} = \frac{2(1 + x^2)}{(1 - x^2)^2} $
5. Substitute into derivative formula:
$ \frac{dy}{dx} = \frac{1}{1 + \frac{4x^2}{(1 - x^2)^2}} \cdot \frac{2(1 + x^2)}{(1 - x^2)^2} = \frac{1}{\frac{(1 - x^2)^2 + 4x^2}{(1 - x^2)^2}} \cdot \frac{2(1 + x^2)}{(1 - x^2)^2} $
6. Simplify denominator:
$ (1 - x^2)^2 + 4x^2 = (1 - 2x^2 + x^4) + 4x^2 = 1 + 2x^2 + x^4 = (1 + x^2)^2 $
7. Simplify derivative expression:
$ \frac{dy}{dx} = \frac{(1 - x^2)^2}{(1 + x^2)^2} \times \frac{2(1 + x^2)}{(1 - x^2)^2} = \frac{2}{1 + x^2} $
Final Answer:
The derivative is: $ { \frac{2}{1 + x^2} } $ (Option A)