Step 1: Use the given condition.
We are given that \( x + y = \frac{\pi}{2} \). This implies \( y = \frac{\pi}{2} - x \). We are asked to find the maximum value of \( \sin x \cdot \sin y \).
Step 2: Use the trigonometric identity.
Using the identity \( \sin \left( \frac{\pi}{2} - x \right) = \cos x \), we get:
\[
\sin x \cdot \sin y = \sin x \cdot \cos x.
\]
This is a standard trigonometric expression, and its maximum value occurs when \( x = \frac{\pi}{4} \), at which point:
\[
\sin \left( \frac{\pi}{4} \right) \cdot \cos \left( \frac{\pi}{4} \right) = \frac{1}{2}.
\]
Step 3: Conclusion.
Thus, the maximum value of \( \sin x \cdot \sin y \) is \( \frac{1}{2} \), corresponding to option (A).