Concept:
The required region lies \emph{inside} the ellipse
\[
4x^2 + y^2 = 8
\]
and to the \emph{right} of the parabola
\[
y^2 = 4x
\]
Area is obtained by integrating with respect to \(y\), using:
\[
\text{Area} = \int (x_{\text{right}} - x_{\text{left}})\, dy
\]
Step 1: Express both curves as functions of \(x\).
Ellipse:
\[
4x^2 = 8 - y^2 \Rightarrow x = \frac{1}{2}\sqrt{8 - y^2}
\]
Parabola:
\[
x = \frac{y^2}{4}
\]
Step 2: Find limits of integration.
Points of intersection satisfy:
\[
\frac{y^2}{4} = \frac{1}{2}\sqrt{8 - y^2}
\]
Squaring:
\[
\frac{y^4}{16} = \frac{8 - y^2}{4}
\]
\[
y^4 + 4y^2 - 32 = 0
\]
Let \( t = y^2 \):
\[
t^2 + 4t - 32 = 0
\Rightarrow t = 4
\]
\[
y = \pm 2
\]
Step 3: Set up the area integral.
By symmetry about the \(x\)-axis:
\[
\text{Area} = 2 \int_{0}^{2} \left( \frac{1}{2}\sqrt{8 - y^2} - \frac{y^2}{4} \right) dy
\]
Step 4: Evaluate the integrals.
\[
\int_{0}^{2} \sqrt{8 - y^2}\, dy
= 2 + \pi
\]
\[
\int_{0}^{2} \frac{y^2}{4}\, dy = \frac{2}{3}
\]
Substituting:
\[
\text{Area}
= 2\left[\frac{1}{2}(2+\pi) - \frac{2}{3}\right]
\]
\[
= 2\left(1 + \frac{\pi}{2} - \frac{2}{3}\right)
= \pi + \frac{2}{3}
\]
\[
\boxed{\text{Area} = \left(\pi + \frac{2}{3}\right)\ \text{sq. unit}}
\]