Concept:
The area between two curves \(y=f(x)\) and \(y=g(x)\) is given by:
\[
\text{Area}=\int (g(x)-f(x))\,dx
\]
To find the ratio in which a vertical line divides the area, compute the areas on each side of the line separately.
Step 1: Identify the region.
Given:
\[
y_{\text{upper}}=3-x,\quad y_{\text{lower}}=x^2+1
\]
Points of intersection are obtained from:
\[
x^2+1=3-x
\]
\[
x^2+x-2=0
\]
\[
(x+2)(x-1)=0
\Rightarrow x=-2,\ 1
\]
Thus, the region extends from \(x=-2\) to \(x=1\).
Step 2: Area to the left of \(x=-1\).
\[
A_1=\int_{-2}^{-1}\left[(3-x)-(x^2+1)\right]dx
=\int_{-2}^{-1}(2-x-x^2)\,dx
\]
\[
A_1=\left[2x-\frac{x^2}{2}-\frac{x^3}{3}\right]_{-2}^{-1}
\]
\[
A_1=\left(-2-\frac{1}{2}+\frac{1}{3}\right)
-\left(-4-2+\frac{8}{3}\right)
=\frac{7}{6}
\]
Step 3: Area to the right of \(x=-1\).
\[
A_2=\int_{-1}^{1}(2-x-x^2)\,dx
\]
\[
A_2=\left[2x-\frac{x^2}{2}-\frac{x^3}{3}\right]_{-1}^{1}
\]
\[
A_2=\left(2-\frac{1}{2}-\frac{1}{3}\right)
-\left(-2-\frac{1}{2}+\frac{1}{3}\right)
=\frac{7}{3}
\]
Step 4: Form the ratio.
\[
A_1 : A_2 = \frac{7}{6} : \frac{7}{3}
= 1 : 2
\]
Thus,
\[
m=1,\quad n=2
\]
\[
\Rightarrow m+n=3
\]
\[
\boxed{5}
\]