Step 1: Understanding the Question and Splitting the Integral:
We need to evaluate a definite integral containing the greatest integer function, \([x]\). The function \([x]\) is a step function which changes its value at every integer. Therefore, we must split the integral at all integer points within the integration interval \([-\pi/2, \pi/2]\).
The approximate value of \(\pi/2\) is 1.57. The integers in the interval \([-1.57, 1.57]\) are -1, 0, and 1.
So we split the integral as follows:
\[ I = \int_{-\pi/2}^{\pi/2} \frac{dx}{[x]+4} = \int_{-\pi/2}^{-1} \frac{dx}{[x]+4} + \int_{-1}^{0} \frac{dx}{[x]+4} + \int_{0}^{1} \frac{dx}{[x]+4} + \int_{1}^{\pi/2} \frac{dx}{[x]+4} \]
Step 2: Evaluating the Greatest Integer Function in Each Interval:
For \(x \in [-\pi/2, -1)\) (i.e., \(-1.57 \leq x<-1\)), we have \([x] = -2\).
For \(x \in [-1, 0)\), we have \([x] = -1\).
For \(x \in [0, 1)\), we have \([x] = 0\).
For \(x \in [1, \pi/2]\) (i.e., \(1 \leq x \leq 1.57\)), we have \([x] = 1\).
Step 3: Calculating the Integral:
Now substitute these constant values into the integrals:
\[ I = \int_{-\pi/2}^{-1} \frac{dx}{-2+4} + \int_{-1}^{0} \frac{dx}{-1+4} + \int_{0}^{1} \frac{dx}{0+4} + \int_{1}^{\pi/2} \frac{dx}{1+4} \]
\[ I = \int_{-\pi/2}^{-1} \frac{1}{2} dx + \int_{-1}^{0} \frac{1}{3} dx + \int_{0}^{1} \frac{1}{4} dx + \int_{1}^{\pi/2} \frac{1}{5} dx \]
Now, we perform the integration:
\[ I = \frac{1}{2}[x]_{-\pi/2}^{-1} + \frac{1}{3}[x]_{-1}^{0} + \frac{1}{4}[x]_{0}^{1} + \frac{1}{5}[x]_{1}^{\pi/2} \]
\[ I = \frac{1}{2}(-1 - (-\pi/2)) + \frac{1}{3}(0 - (-1)) + \frac{1}{4}(1 - 0) + \frac{1}{5}(\pi/2 - 1) \]
\[ I = \frac{1}{2}(-1 + \pi/2) + \frac{1}{3}(1) + \frac{1}{4}(1) + \frac{1}{5}(\pi/2 - 1) \]
Step 4: Final Calculation:
Group the terms with \(\pi\) and the constant terms:
\[ I = (-\frac{1}{2} + \frac{\pi}{4}) + \frac{1}{3} + \frac{1}{4} + (\frac{\pi}{10} - \frac{1}{5}) \]
\[ I = \left(\frac{\pi}{4} + \frac{\pi}{10}\right) + \left(-\frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5}\right) \]
The \(\pi\) part:
\[ \frac{5\pi + 2\pi}{20} = \frac{7\pi}{20} \]
The constant part:
\[ \frac{-30 + 20 + 15 - 12}{60} = \frac{-7}{60} \]
So, the calculated value of the integral is \(I = \frac{7\pi}{20} - \frac{7}{60}\).