Concept:
Integrals of the form
\[
\int (\sin x)^m(\cos x)^n\,dx
\]
with negative fractional powers can often be simplified using the substitution:
\[
t=\cot x
\quad \Rightarrow \quad
dt = -\csc^2 x\,dx
\]
and rewriting all trigonometric functions in terms of \(\cot x\).
Step 1: Rewrite the integrand.
\[
(\cos x)^{-5/2}(\sin x)^{-11/2}
=
(\cot x)^{-5/2}(\sin x)^{-8}
\]
Using:
\[
\sin^2 x = \frac{1}{1+\cot^2 x}
\]
\[
(\sin x)^{-8} = (1+\cot^2 x)^4
\]
Thus,
\[
\int (\cot x)^{-5/2}(1+\cot^2 x)^4 \csc^2 x\,(-d(\cot x))
\]
Step 2: Substitute \(t=\cot x\).
\[
I = -\int t^{-5/2}(1+t^2)^4\,dt
\]
Expand:
\[
(1+t^2)^4 = 1+4t^2+6t^4+4t^6+t^8
\]
So,
\[
I = -\int \left(
t^{-5/2}
+4t^{-1/2}
+6t^{3/2}
+4t^{7/2}
+t^{11/2}
\right)dt
\]
Step 3: Integrate term by term.
\[
\int t^{-5/2}dt = -\frac{2}{3}t^{-3/2}
\]
\[
\int t^{-1/2}dt = 2t^{1/2}
\]
\[
\int t^{3/2}dt = \frac{2}{5}t^{5/2}
\]
\[
\int t^{7/2}dt = \frac{2}{9}t^{9/2}
\]
\[
\int t^{11/2}dt = \frac{2}{13}t^{13/2}
\]
After applying the negative sign and arranging in descending powers:
\[
I =
\frac{2}{9}(\cot x)^{9/2}
+
\frac{12}{5}(\cot x)^{5/2}
+
8(\cot x)^{1/2}
-
\frac{2}{3}(\cot x)^{-3/2}
+ C
\]
Step 4: Identify coefficients.
\[
\frac{p_1}{q_1}=\frac{2}{9},\quad
\frac{p_2}{q_2}=\frac{12}{5},\quad
\frac{p_3}{q_3}=8,\quad
\frac{p_4}{q_4}=\frac{2}{3}
\]
Thus:
\[
p_1=2,\ q_1=9;\quad
p_2=12,\ q_2=5;\quad
p_3=8,\ q_3=1;\quad
p_4=2,\ q_4=3
\]
Step 5: Compute the required value.
\[
\frac{15p_1p_2p_3p_4}{q_1q_2q_3q_4}
=
\frac{15\times2\times12\times8\times2}{9\times5\times1\times3}
\]
\[
= \frac{5760}{360}=16
\]
\[
\boxed{16}
\]