Step 1: The area of the parallelogram is given by the magnitude of the cross product of the vectors \( \vec{a} \) and \( \vec{b} \): \[ {Area} = |\vec{a} \times \vec{b}| \]
Step 2: Compute the cross product \( \vec{a} \times \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
3 & 1 & 2
1 & 2 & -2 \end{vmatrix} \]
Step 3: Expand the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 2
2 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2
1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1
1 & 2 \end{vmatrix} \] \[ = \hat{i} (-2 - 4) - \hat{j} (-6 - 2) + \hat{k} (6 - 1) \] \[ = -6 \hat{i} + 8 \hat{j} + 5 \hat{k} \] Step 4: Find the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = \sqrt{(-6)^2 + 8^2 + 5^2} = \sqrt{36 + 64 + 25} = \sqrt{125} = 10 \]
The area of the region given by \(\left\{(x, y): x y \leq 8,1 \leq y \leq x^2\right\}\) is :
If 5f(x) + 4f (\(\frac{1}{x}\)) = \(\frac{1}{x}\)+ 3, then \(18\int_{1}^{2}\) f(x)dx is:
State Gauss's Law in electrostatics. Using it (i) find electric field due to a point source charge \( q \) and (ii) deduce Coulomb's law between source charge \( q \) and test charge \( q_0 \).
Compare features of p-type and n-type semiconductors. Draw circuit diagram of half-wave rectifier of p-n junction diode and explain it.
What is atomic model of magnetism? Differentiate between paramagnetic, diamagnetic, and ferromagnetic substances on this basis. Also, give one example of each.