When solving limits involving trigonometric functions, use standard identities like the difference of sines identity. For limits involving \(\sin(x)\) and \(x \rightarrow 0\), recall that \( \lim\limits_{x \rightarrow 0} \frac{\sin(x)}{x} = 1 \), which simplifies many trigonometric limit problems.
The correct answer is: (B) 2, 2.
We are given the limit expression:
\( \lim\limits_{x \rightarrow 0} \frac{\sin(2+x) - \sin(2-x)}{x} \)
To solve this limit, we will use the trigonometric identity for the difference of sines:
\( \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \)
Substituting \( A = 2+x \) and \( B = 2-x \), we get:
\( \sin(2+x) - \sin(2-x) = 2 \cos\left(\frac{(2+x) + (2-x)}{2}\right) \sin\left(\frac{(2+x) - (2-x)}{2}\right) \)
Simplifying further:\( = 2 \cos(2) \sin(x) \)
Now, substitute this expression back into the limit:
\( \lim\limits_{x \rightarrow 0} \frac{2 \cos(2) \sin(x)}{x} \)
Using the standard limit result \( \lim\limits_{x \rightarrow 0} \frac{\sin(x)}{x} = 1 \), we get:\( 2 \cos(2) \)
Thus, the values of \( A \) and \( B \) are 2 and 2, respectively.Therefore, the correct answer is (B) 2, 2.