Step 1: Use given magnitudes to find \(\vec{a}\cdot\vec{b}\).
\[
\lvert \vec{a} + \vec{b}\rvert^2
= \lvert \vec{a}\rvert^2 + \lvert \vec{b}\rvert^2 + 2\,\vec{a}\cdot\vec{b}
= 3^2 + 4^2 + 2\,(\vec{a}\cdot\vec{b})
= 9 +16 + 2\,(\vec{a}\cdot\vec{b})
=25 + 2\,(\vec{a}\cdot\vec{b}).
\]
Given \(\lvert \vec{a} + \vec{b}\rvert = \sqrt{37}\), so
\[
(\sqrt{37})^2 =37= 25 + 2\,(\vec{a}\cdot\vec{b})
\quad\Longrightarrow\quad
\vec{a}\cdot\vec{b} = 6.
\]
Thus \(\vec{a}\cdot\vec{b}=3\cdot4\cdot\cos\theta=12\cos\theta=6\implies\cos\theta=\tfrac12\).
Step 2: Express \(\lvert \vec{a} - \vec{b}\rvert\) in terms of \(k\).
We know \(\lvert \vec{a} - \vec{b}\rvert =k\). Hence
\[
k^2
= \lvert \vec{a}\rvert^2 + \lvert \vec{b}\rvert^2 -2\,\vec{a}\cdot\vec{b}
= 9 +16 -2\cdot 6
=25 -12
=13.
\]
So \(k=\sqrt{13}.\)
Step 3: \(\sin\theta\) and the final expression.
From \(\cos\theta=\tfrac12,\) we get \(\sin\theta=\tfrac{\sqrt{3}}{2}.\) Thus
\[
k\sin\theta
= \sqrt{13}\cdot \tfrac{\sqrt{3}}{2}
= \tfrac{\sqrt{39}}{2}.
\]
Hence
\[
(k\sin\theta)^2
= \Bigl(\tfrac{\sqrt{39}}{2}\Bigr)^2
= \tfrac{39}{4}.
\]
Finally,
\[
\frac{4}{13}\,(k\sin\theta)^2
= \frac{4}{13}\times \frac{39}{4}
= \frac{39}{13}
= 3.
\]
Therefore, \(\boxed{3}\) is the value of \(\tfrac{4}{13}\,(k\sin\theta)^2\).