The magnitude of the resultant vector \( R' \) of two vectors \( A \) and \( B \) inclined at an angle \( \theta \) is given by:
\[ R' = \sqrt{a^2 + b^2 + 2ab \cos \theta}. \]Here \( a = b = R \), so:
\[ R' = \sqrt{R^2 + R^2 + 2R \cdot R \cos \theta} = \sqrt{2R^2 (1 + \cos \theta)}. \]Using the identity \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \), we get:
\[ R' = \sqrt{2R^2 \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)} = 2R \cos \left(\frac{\theta}{2}\right). \]Thus, the answer is:
\[ |A + B| = 2R \cos \left(\frac{\theta}{2}\right). \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: