To solve this problem, we need to determine the resultant magnitude of the sum or difference of two vectors \(\vec{A}\) and \(\vec{B}\) that have equal magnitudes and are inclined at an angle \(\theta\).
Let's start by considering the vector addition formula for two vectors \(\vec{A}\) and \(\vec{B}\) with equal magnitudes \(R\):
\(|\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + 2AB \cos \theta}\)
Since \(|\vec{A}| = |\vec{B}| = R\), we substitute these values into the formula:
\(|\vec{A} + \vec{B}| = \sqrt{R^2 + R^2 + 2 \cdot R \cdot R \cdot \cos \theta}\)
Simplifying this, we get:
\(|\vec{A} + \vec{B}| = \sqrt{2R^2(1 + \cos \theta)}\)
Using the trigonometric identity \(1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right)\), we substitute to find:
\(|\vec{A} + \vec{B}| = \sqrt{2R^2 \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)}\)
This reduces to:
\(|\vec{A} + \vec{B}| = 2R \cos \left(\frac{\theta}{2}\right)\)
Thus, the correct answer is:
\(|\vec{A} + \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)\)
This matches with the given correct option: \(|\vec{A} + \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)\).
By examining other options, we can further confirm this:
Therefore, Option 3 is correct and valid.
The magnitude of the resultant vector \( R' \) of two vectors \( A \) and \( B \) inclined at an angle \( \theta \) is given by:
\[ R' = \sqrt{a^2 + b^2 + 2ab \cos \theta}. \]Here \( a = b = R \), so:
\[ R' = \sqrt{R^2 + R^2 + 2R \cdot R \cos \theta} = \sqrt{2R^2 (1 + \cos \theta)}. \]Using the identity \( 1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) \), we get:
\[ R' = \sqrt{2R^2 \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)} = 2R \cos \left(\frac{\theta}{2}\right). \]Thus, the answer is:
\[ |A + B| = 2R \cos \left(\frac{\theta}{2}\right). \]Let R = {(1, 2), (2, 3), (3, 3)}} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is: