Given:
\[
v_{\text{avg}} = \frac{x_1 + x_2}{t_1 + t_2}
\]
Where \( x_1 = x \), \( x_2 = \frac{3x}{2} \), \( v_1 = 5 \, \text{m/s} \), and \( v_2 \) is the unknown velocity. Substituting the values:
\[
v_{\text{avg}} = \frac{50}{7} \, \text{m/s}
\]
\[
\Rightarrow \frac{50}{7} = \frac{x + \frac{3x}{2}}{\frac{x}{v_1} + \frac{3x}{2v_2}}
\]
\[
\Rightarrow \frac{50}{7} = \frac{\frac{5x}{2}}{\frac{x}{5} + \frac{3x}{2v_2}}
\]
Simplifying the equation:
\[
\Rightarrow \frac{50}{7} = \frac{5x}{2} \times \frac{5}{x} \quad \text{(by cross-multiplying)}
\]
\[
\Rightarrow v_2 = 10 \, \text{m/s}
\]