Given: Right-angled triangle \( \Delta ABC \) with right angle at \( C \).
Step 1: Label the sides.
Let:
Step 2: Express \(\tan A\) and \(\tan B\).
\[ \tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{a}{b} \] \[ \tan B = \frac{\text{opposite}}{\text{adjacent}} = \frac{b}{a} \]
Step 3: Compute \(\tan A + \tan B\).
\[ \tan A + \tan B = \frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} \]
Step 4: Apply Pythagorean theorem.
\[ a^2 + b^2 = c^2 \Rightarrow \tan A + \tan B = \frac{c^2}{ab} \]
Option Analysis:
(A) \( a + b \) - Incorrect (sum of sides, not tangent sum)
(B) \( \frac{a^2}{bc} \) - Incorrect form
(C) \( \frac{c^2}{ab} \) - Correct (matches our derivation)
(D) \( \frac{b^2}{ac} \) - Incorrect form
Final Answer: \(\boxed{C}\)
In a right triangle, $\tan A = \frac{BC}{AC}$ and $\tan B = \frac{AC}{BC}$.
Then: $\tan A + \tan B = \frac{BC}{AC} + \frac{AC}{BC} = \frac{BC^2 + AC^2}{BC \cdot AC}$.
Using the Pythagorean theorem, $BC^2 + AC^2 = AB^2 = c^2$.
Hence: $\tan A + \tan B = \frac{c^2}{ab}$.