Heat required \( Q = mc\Delta T \), where \( m \) is mass, \( c \) specific heat, and \( \Delta T \) temperature change.
To determine the amount of heat required to raise the temperature of water, we use the formula for heat transfer:
\( Q = mc\Delta T \)
where:
Given the problem:
First, calculate the change in temperature:
\( \Delta T = 75^\circ C - 25^\circ C = 50^\circ C \)
Substitute the given values into the heat transfer formula:
\( Q = 2 \times 4200 \times 50 \)
\( Q = 4200 \times 100 \)
\( Q = 420000 \, \text{J} \)
Therefore, the heat required is \( 4.2 \times 10^5 \, \text{J} \).