Heat required \( Q = mc\Delta T \), where \( m \) is mass, \( c \) specific heat, and \( \Delta T \) temperature change.
To determine the amount of heat required to raise the temperature of water, we use the formula for heat transfer:
\( Q = mc\Delta T \)
where:
Given the problem:
First, calculate the change in temperature:
\( \Delta T = 75^\circ C - 25^\circ C = 50^\circ C \)
Substitute the given values into the heat transfer formula:
\( Q = 2 \times 4200 \times 50 \)
\( Q = 4200 \times 100 \)
\( Q = 420000 \, \text{J} \)
Therefore, the heat required is \( 4.2 \times 10^5 \, \text{J} \).
An ideal monatomic gas of $ n $ moles is taken through a cycle $ WXYZW $ consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic $ V-T $ diagram. The volume of the gas at $ W, X $ and $ Y $ points are, $ 64 \, \text{cm}^3 $, $ 125 \, \text{cm}^3 $ and $ 250 \, \text{cm}^3 $, respectively. If the absolute temperature of the gas $ T_W $ at the point $ W $ is such that $ n R T_W = 1 \, J $ ($ R $ is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path $ XY $ is
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Two identical plates $ P $ and $ Q $, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures $ T_P $ and $ T_Q $, respectively, with $ T_Q<T_P $, as shown in Fig. 1. The radiated power transferred per unit area from $ P $ to $ Q $ is $ W_0 $. Subsequently, two more plates, identical to $ P $ and $ Q $, are introduced between $ P $ and $ Q $, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from $ P $ to $ Q $ (Fig. 2) in the steady state is $ W_S $, then the ratio $ \dfrac{W_0}{W_S} $ is ____.
If $ A = \left[\begin{array}{cc} 3 & 1 \\2 & 4 \end{array}\right] $, then the determinant of the adjoint of $ A^2 $ is: