To solve the integral, we note that it is an even function due to the symmetric limits and the even nature of \( \cos(\alpha x) \). Therefore, we can simplify by doubling the integral from 0 to 1:
\[ \int_{-1}^1 \frac{\cos \alpha x}{1 + 3^x} \, dx = 2 \int_0^1 \frac{\cos \alpha x}{1 + 3^x} \, dx. \]
Given that the value of this integral equals \( \frac{2}{\pi} \), we proceed by testing values of \( \alpha \) to match this result.
Through evaluation, it turns out that setting \( \alpha = \frac{\pi}{2} \) satisfies this condition, yielding:
\[ \int_{-1}^1 \frac{\cos \left( \frac{\pi}{2} x \right)}{1 + 3^x} \, dx = \frac{\pi}{2}. \]
Therefore, the value of \( \alpha \) is \( \frac{\pi}{2} \).
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
