Equation of tangent to ellipse
\(\frac{x}{\sqrt{27}}+\frac{y}{\sqrt{3}}=1\)
Area bounded by line and co-ordinate axis
\(\frac12\times\)intercept on x-axis \(\times\) intercept on y -axis
\(\Delta=\frac{1}{2}.\frac{\sqrt{27m^2+3}}{m}. {\sqrt{27m^2+3}}{sin}\)
\(\frac12\times\frac{(27m^2+3)}{m}\)
now apply
AM≥GM
\(\frac{27m+\frac3m}{2}\)≥\(\sqrt{27m\times\frac3m}\) ≥ \(9\)
\(\Delta\)
\(\Delta_{min}=9\)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $