Step 1: Use the quadratic formula
The quadratic formula is:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
For the quadratic equation \( 2x^2 - 3x - 5 = 0 \), we have:
- \( a = 2 \),
- \( b = -3 \),
- \( c = -5 \).
Step 2: Substitute the values into the quadratic formula
\[
x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-5)}}{2(2)}
\]
\[
x = \frac{3 \pm \sqrt{9 + 40}}{4}
\]
\[
x = \frac{3 \pm \sqrt{49}}{4}
\]
\[
x = \frac{3 \pm 7}{4}
\]
Step 3: Solve for both values of \( x \)
The two possible solutions are:
\[
x_1 = \frac{3 + 7}{4} = \frac{10}{4} = 2.5
\]
\[
x_2 = \frac{3 - 7}{4} = \frac{-4}{4} = -1
\]
Answer: Therefore, the solutions are \( x = 2.5 \) and \( x = -1 \). So, the correct answer is option (3).