Step 1: Understanding the Concept:
There is a fundamental theorem in geometry that relates the areas of similar triangles to their corresponding sides.
Step 2: Key Formula or Approach:
If two triangles are similar, the ratio of their areas is equal to the square of the ratio of their corresponding sides.
\[ \frac{\text{Area}_1}{\text{Area}_2} = \left(\frac{\text{Side}_1}{\text{Side}_2}\right)^2 \]
Therefore, the ratio of the sides is the square root of the ratio of the areas.
\[ \frac{\text{Side}_1}{\text{Side}_2} = \sqrt{\frac{\text{Area}_1}{\text{Area}_2}} \]
Step 3: Detailed Explanation:
We are given the ratio of the areas:
\[ \frac{\text{Area}_1}{\text{Area}_2} = \frac{100}{144} \]
To find the ratio of the corresponding sides, we take the square root:
\[ \frac{\text{Side}_1}{\text{Side}_2} = \sqrt{\frac{100}{144}} = \frac{\sqrt{100}}{\sqrt{144}} = \frac{10}{12} \]
So, the ratio of the corresponding sides is 10 : 12.
Step 4: Final Answer:
The ratio of their corresponding sides is 10 : 12.