If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane \(\vec r(3\hat i+4\hat j-12\hat k)+13=0,\) then find the value of p.
The position vector through the point (1, 1, p) is
\(\vec a_1 =\hat i+\hat j+p\hat k\)
Similarly, the position vector through the point (-3, 0, 1)is
\(\vec a_2 =-4\hat i+\hat k\)
The equation of the given plane is
\(\vec r.(3\hat i+4\hat j-12\hat k)+13=0\)
It is known that the perpendicular distance between a point whose position vector is \(\vec a\) and the plane,\(\vec r.\vec N =d\), is given by,\(D=\frac {|\vec a.\vec N-d|}{|\vec N|}\)
Here, \(\vec N=3\hat i+4\hat j-12\hat k\) and \(d=-13\)
Therefore,the distance between the point(1,1,p)and the given plane is
\(D_1=\frac {|(\hat i+\hat j+p\hat k).(3\hat i+4\hat j-12\hat k)+13|}{|3\hat i+4\hat j-12\hat k|}\)
⇒\(D_1=\frac {|3+4-12p+13|}{\sqrt {3^2+4^2+(-12)^2}}\)
⇒\(D_1=\frac {|20-12p|}{13}\) ...(1)
Similarly,the distance between the point(-3,0,1)and the given plane is
\(D_2=\frac {|(-3\hat i+\hat k).(3\hat i+4\hat j-12\hat k)+13|}{|3\hat i+4\hat j-12\hat k|}\)
⇒\(D_2=\frac {|-9-12+13|}{\sqrt {3^2+4^2+(-12)^2}}\)]
⇒\(D_2=\frac {8}{13}\) ...(2)
It is given that the distance between the required plane and the points (1, 1, p) and (-3, 0, 1) is equal.
\(∴D_1=D_2\)
⇒ \(\frac {|20-12p|}{13} =\frac {8}{13}\)
⇒ \(20-12p=8 \ or\ -(20-12p)=8\)
⇒ \(12p=12 \ or \ 12p=28\)
⇒ \(p=1\ or \ p=\frac 73\)
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?