The resistance \( R \) of the wire is given by:
\[ R = \frac{\rho L}{\pi d^2 / 4} \]
Taking the percentage error:
\[ \frac{\Delta R}{R} = \frac{\Delta L}{L} + 2 \frac{\Delta d}{d} \]
Given:
\[ \frac{\Delta L}{L} = 0.1\% \quad \text{and} \quad \frac{\Delta d}{d} = 0.1\% \]
Therefore:
\[ \frac{\Delta R}{R} = 0.1\% + 2 \times 0.1\% = 0.3\% =0.003 \]
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: