Question:

Match the LIST-I with LIST-II

LIST-ILIST-II
A.Boltzmann constantI.\( \text{ML}^2\text{T}^{-1} \)
B.Coefficient of viscosityII.\( \text{MLT}^{-3}\text{K}^{-1} \)
C.Planck's constantIII.\( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \)
D.Thermal conductivityIV.\( \text{ML}^{-1}\text{T}^{-1} \)

Choose the correct answer from the options given below :

Show Hint

To find the dimensions of a physical quantity, use the fundamental formulas relating it to other quantities whose dimensions are known. Remember the fundamental dimensions of mass (M), length (L), time (T), and temperature (K). Derive the dimensions step by step using the definitions of the quantities involved.
Updated On: Apr 25, 2025
  • A-III, B-IV, C-I, D-II
  • A-II, B-III, C-IV, D-I
  • A-III, B-II, C-I, D-IV
  • A-III, B-IV, C-II, D-I
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let's find the dimensions of each quantity in LIST-I. 

A. Boltzmann constant (k): From the ideal gas law, \( PV = NkT \), where P is pressure 
(\( \text{ML}^{-1}\text{T}^{-2} \)), V is volume (\( \text{L}^3 \)), N is the number of particles (dimensionless), k is the Boltzmann constant, and T is temperature (K). 
So, \( k = \frac{PV}{NT} = \frac{(\text{ML}^{-1}\text{T}^{-2})(\text{L}^3)}{(1)(\text{K})} = \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) 
Thus, A matches with III. 

B. Coefficient of viscosity (\( \eta \)): From viscous force \( F = 6\pi \eta r v \), where F is force (\( \text{MLT}^{-2} \)), r is radius (L), and v is velocity (\( \text{LT}^{-1} \)). 
So, \( \eta = \frac{F}{6\pi r v} = \frac{\text{MLT}^{-2}}{(1)(\text{L})(\text{LT}^{-1})} = \frac{\text{MLT}^{-2}}{\text{L}^2\text{T}^{-1}} = \text{ML}^{-1}\text{T}^{-1} \) 
Thus, B matches with IV. 

C. Planck's constant (h): From the energy of a photon \( E = hf \), where E is energy (\( \text{ML}^2\text{T}^{-2} \)) and f is frequency (\( \text{T}^{-1} \)). So, \( h = \frac{E}{f} = \frac{\text{ML}^2\text{T}^{-2}}{\text{T}^{-1}} = \text{ML}^2\text{T}^{-1} \) 
Thus, C matches with I. 

D. Thermal conductivity (K): From the rate of heat flow \( \frac{dQ}{dt} = -KA \frac{dT}{dx} \), where \( \frac{dQ}{dt} \) is power (\( \text{ML}^2\text{T}^{-3} \)), A is area (\( \text{L}^2 \)), and \( \frac{dT}{dx} \) is temperature gradient (\( \text{KL}^{-1} \)). 
So, \( K = \frac{(dQ/dt) dx}{A dT} = \frac{(\text{ML}^2\text{T}^{-3})(\text{L})}{(\text{L}^2)(\text{K})} = \frac{\text{ML}^3\text{T}^{-3}}{\text{L}^2\text{K}} = \text{MLT}^{-3}\text{K}^{-1} \) 
Thus, D matches with II. 

The correct matching is A-III, B-IV, C-I, D-II, which corresponds to option (A).

Was this answer helpful?
0
0