Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let's find the dimensions of each quantity in LIST-I.
A. Boltzmann constant (k): From the ideal gas law, \( PV = NkT \), where P is pressure
(\( \text{ML}^{-1}\text{T}^{-2} \)), V is volume (\( \text{L}^3 \)), N is the number of particles (dimensionless), k is the Boltzmann constant, and T is temperature (K).
So, \( k = \frac{PV}{NT} = \frac{(\text{ML}^{-1}\text{T}^{-2})(\text{L}^3)}{(1)(\text{K})} = \text{ML}^2\text{T}^{-2}\text{K}^{-1} \)
Thus, A matches with III.
B. Coefficient of viscosity (\( \eta \)): From viscous force \( F = 6\pi \eta r v \), where F is force (\( \text{MLT}^{-2} \)), r is radius (L), and v is velocity (\( \text{LT}^{-1} \)).
So, \( \eta = \frac{F}{6\pi r v} = \frac{\text{MLT}^{-2}}{(1)(\text{L})(\text{LT}^{-1})} = \frac{\text{MLT}^{-2}}{\text{L}^2\text{T}^{-1}} = \text{ML}^{-1}\text{T}^{-1} \)
Thus, B matches with IV.
C. Planck's constant (h): From the energy of a photon \( E = hf \), where E is energy (\( \text{ML}^2\text{T}^{-2} \)) and f is frequency (\( \text{T}^{-1} \)). So, \( h = \frac{E}{f} = \frac{\text{ML}^2\text{T}^{-2}}{\text{T}^{-1}} = \text{ML}^2\text{T}^{-1} \)
Thus, C matches with I.
D. Thermal conductivity (K): From the rate of heat flow \( \frac{dQ}{dt} = -KA \frac{dT}{dx} \), where \( \frac{dQ}{dt} \) is power (\( \text{ML}^2\text{T}^{-3} \)), A is area (\( \text{L}^2 \)), and \( \frac{dT}{dx} \) is temperature gradient (\( \text{KL}^{-1} \)).
So, \( K = \frac{(dQ/dt) dx}{A dT} = \frac{(\text{ML}^2\text{T}^{-3})(\text{L})}{(\text{L}^2)(\text{K})} = \frac{\text{ML}^3\text{T}^{-3}}{\text{L}^2\text{K}} = \text{MLT}^{-3}\text{K}^{-1} \)
Thus, D matches with II.
The correct matching is A-III, B-IV, C-I, D-II, which corresponds to option (A).
Mass = \( (28 \pm 0.01) \, \text{g} \), Volume = \( (5 \pm 0.1) \, \text{cm}^3 \). What is the percentage error in density?
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)