We are given the parabola:
\[
y^2 = 9x
\]
and the point \( P(9,9) \) on the parabola. We need to find where the normal at \( P \) meets the parabola again at \( Q(a,b) \) and compute:
\[
2a + b
\]
---
Step 1: Find Parameter \( t \) for \( P(9,9) \)
For the standard parabola \( y^2 = 4ax \), we compare with \( y^2 = 9x \) to get:
\[
4a = 9 \Rightarrow a = \frac{9}{4}
\]
The parametric form of the parabola:
\[
x = at^2, \quad y = 2at
\]
Substituting \( P(9,9) \):
\[
9 = \frac{9}{4} t^2 \Rightarrow t^2 = 4 \Rightarrow t = \pm 2
\]
Since \( y = 2at = 9 \), solving for \( t \):
\[
2 \times \frac{9}{4} \times t = 9
\]
\[
\frac{18}{4} t = 9
\]
\[
\frac{9}{2} t = 9 \Rightarrow t = 2
\]
Thus, \( P \) corresponds to \( t = 2 \).
---
Step 2: Find Equation of the Normal at \( P \)
The equation of the normal to the parabola \( y^2 = 4ax \) at the parametric point \( (at^2, 2at) \) is:
\[
y - 2at = -t(x - at^2)
\]
Substituting \( t = 2 \) and \( a = \frac{9}{4} \):
\[
y - 2 \times \frac{9}{4} \times 2 = -2(x - \frac{9}{4} \times 4)
\]
\[
y - 9 = -2(x - 9)
\]
\[
y - 9 = -2x + 18
\]
\[
y = -2x + 27
\]
---
Step 3: Find the Second Intersection \( Q(a,b) \)
To find the second intersection, substitute \( y = -2x + 27 \) into the parabola equation:
\[
(-2x + 27)^2 = 9x
\]
Expanding:
\[
4x^2 - 108x + 729 = 9x
\]
\[
4x^2 - 117x + 729 = 0
\]
Solving for \( x \) using the quadratic formula:
\[
x = \frac{-(-117) \pm \sqrt{(-117)^2 - 4(4)(729)}}{2(4)}
\]
\[
x = \frac{117 \pm \sqrt{13689 - 11664}}{8}
\]
\[
x = \frac{117 \pm \sqrt{2025}}{8}
\]
\[
x = \frac{117 \pm 45}{8}
\]
\[
x = \frac{162}{8} = \frac{81}{4} \quad \text{or} \quad x = \frac{72}{8} = 9
\]
Since \( P(9,9) \) is one root, the second intersection \( Q(a,b) \) corresponds to:
\[
a = \frac{81}{4}
\]
Finding \( b \):
\[
b = -2 \left( \frac{81}{4} \right) + 27
\]
\[
= -\frac{162}{4} + 27 = -\frac{162}{4} + \frac{108}{4}
\]
\[
= \frac{-162 + 108}{4} = \frac{-54}{4} = -\frac{27}{2}
\]
---
Step 4: Compute \( 2a + b \)
\[
2a + b = 2 \times \frac{81}{4} + \left( -\frac{27}{2} \right)
\]
\[
= \frac{162}{4} - \frac{54}{4}
\]
\[
= \frac{108}{4} = 27
\]
---
Final Answer:
\[
\boxed{27}
\]
\bigskip