Class interval | Frequency |
---|---|
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
The cumulative frequency for the given data is calculated as follows.
Class interval | Frequency | Cumulative frequency |
---|---|---|
0 - 10 | 5 | 5 |
10 - 20 | x | 5 + x |
20 - 30 | 20 | 25 + x |
30 - 40 | 15 | 40 + x |
40 - 50 | y | 40 + x +y |
50 - 60 | 5 | 45 + x +y |
Total | 60 |
From the table, it can be observed that n = 60
45 + x + y = 60 or x + y = 15 ……………………….(1)
Median of the data is given as 28.5 which lies in interval 20 − 30.
Therefore, median class = 20 − 30
Lower limit (\(l\)) of median class = 20
Cumulative frequency (\(cf\)) of class preceding the median class = 5 + x
Frequency (\(f\)) of median class = 20
Class size (\(h\)) = 10
Median = \(l + (\frac{\frac{n}2 - cf}{f})\times h\)
28.5 = \(20 + [\frac{\frac{60}2 - (5 +x)}{20}]\times 10\)
8.5 = \((\frac{25 - x}2)\)
17 = 25 - x
x = 8
From equation (1),
8 + y = 15
y = 7
Hence, the values of x and y are 8 and 7 respectively.
In this formula for the median:
\(\text{Median} = l + \left[ \frac{\frac{n}{2} - \text{cf}}{f} \right] \times h\)
Where:
Given:
Using the median formula: \(28.5 = 20 + \left[ \frac{30 - (5 + x)}{20} \right] \times 10\)
Simplify inside the brackets: \(28.5 = 20 + \left[ \frac{30 - 5 - x}{20} \right] \times 10\)
\(28.5 = 20 + \left[ \frac{25 - x}{20} \right] \times 10\)
\(28.5 = 20 + \left( \frac{25 - x}{2} \right)\)
Subtract 20 from both sides: \(8.5 = \frac{25 - x}{2}\)
Multiply both sides by 2: \(17=25−x\)
Solve for x:
\( x=25−17\)
\( x=8\)
Now, using the cumulative frequency, find the value of \(x+y: \)
\(60=5+20+15+5+x+y\)
\( 60=45+x+y\)
\(60−45=x+y\)
\( 15=x+y\)
Substitute \( x=8:\)
\( y=15−x\)
\( y=15−8\)
\(y=7\)
Thus, x=8 and y=7.
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Median class of the following frequency distribution will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-10 & 7 \\ \hline 10-20 & 12 \\ \hline 20-30 & 18 \\ \hline 30-40 & 15 \\ \hline 40-50 & 10 \\ \hline 50-60 & 3 \\ \hline \end{array} \]
The median class of the following frequency distribution will be:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-Interval} & \text{$0$--$10$} & \text{$10$--$20$} & \text{$20$--$30$} & \text{$30$--$40$} & \text{$40$--$50$} \\ \hline \text{Frequency} & \text{$7$} & \text{$8$} & \text{$15$} & \text{$10$} & \text{$5$} \\ \hline \end{array}\]
The following data shows the number of family members living in different bungalows of a locality:
Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम