Question:

If the median of the distribution given below is 28.5, find the values of x and y.

Class interval

Frequency

0 - 10

5

10 - 20

x

20 - 30

20

30 - 40

15

40 - 50 

y

50 - 60 

5

Total 

60

Updated On: Jun 14, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution - 1

The cumulative frequency for the given data is calculated as follows.  

Class interval

Frequency

Cumulative frequency 

0 - 10

5

10 - 20

x

5 + x

20 - 30

20

25 + x

30 - 40

15

40 + x

40 - 50 

y

40 + x +y

50 - 60 

5

45 + x +y

Total 

60

 


From the table, it can be observed that n = 60 

45 + x + y = 60     or    x + y = 15 ……………………….(1)  
Median of the data is given as 28.5 which lies in interval 20 − 30.  

Therefore, median class = 20 − 30 
Lower limit (\(l\)) of median class = 20   
Cumulative frequency (\(cf\)) of class preceding the median class = 5 + x 
Frequency (\(f\)) of median class = 20
Class size (\(h\)) = 10  

Median = \(l + (\frac{\frac{n}2 - cf}{f})\times h\)

28.5 = \(20 + [\frac{\frac{60}2 - (5 +x)}{20}]\times 10\)

8.5 = \((\frac{25 - x}2)\)

17 = 25 - x
 x = 8

From equation (1), 
8 + y = 15 
y = 7 

Hence, the values of x and y are 8 and 7 respectively.

Was this answer helpful?
4
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

In this formula for the median:

\(\text{Median} = l + \left[ \frac{\frac{n}{2} - \text{cf}}{f} \right] \times h\)

Where:

  • l is the lower limit of the median class
  • n is the number of observations
  • \(\text{cf}\) is the cumulative frequency of the class preceding the median class
  • f is the frequency of the median class
  • h is the class size or width of the median class

Given:

  • \(n=60\) hence \(\frac{n}{2} = 30\)
  • The median class is 20-30 with a cumulative frequency of \(25+x\)
  • The lower limit of the median class is 20
  • \(\text{cf} = 5 + x\)
  • \(f = 20\)
  • \(h=10\)

Using the median formula: \(28.5 = 20 + \left[ \frac{30 - (5 + x)}{20} \right] \times 10\)

Simplify inside the brackets: \(28.5 = 20 + \left[ \frac{30 - 5 - x}{20} \right] \times 10\)
\(28.5 = 20 + \left[ \frac{25 - x}{20} \right] \times 10\)
\(28.5 = 20 + \left( \frac{25 - x}{2} \right)\)

Subtract 20 from both sides: \(8.5 = \frac{25 - x}{2}\)

Multiply both sides by 2: \(17=25−x\)

Solve for x:
\( x=25−17\)
\( x=8\)

Now, using the cumulative frequency, find the value of \(x+y: \)
\(60=5+20+15+5+x+y\)
\( 60=45+x+y\)
\(60−45=x+y\)
\( 15=x+y\)

Substitute \( x=8:\)
\( y=15−x\)
\( y=15−8\)
 \(y=7\)

Thus, x=8 and y=7.

Was this answer helpful?
2
0

Top Questions on Median of Grouped Data

View More Questions