Class interval | Frequency |
---|---|
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
The cumulative frequency for the given data is calculated as follows.
Class interval | Frequency | Cumulative frequency |
---|---|---|
0 - 10 | 5 | 5 |
10 - 20 | x | 5 + x |
20 - 30 | 20 | 25 + x |
30 - 40 | 15 | 40 + x |
40 - 50 | y | 40 + x +y |
50 - 60 | 5 | 45 + x +y |
Total | 60 |
From the table, it can be observed that n = 60
45 + x + y = 60 or x + y = 15 ……………………….(1)
Median of the data is given as 28.5 which lies in interval 20 − 30.
Therefore, median class = 20 − 30
Lower limit (\(l\)) of median class = 20
Cumulative frequency (\(cf\)) of class preceding the median class = 5 + x
Frequency (\(f\)) of median class = 20
Class size (\(h\)) = 10
Median = \(l + (\frac{\frac{n}2 - cf}{f})\times h\)
28.5 = \(20 + [\frac{\frac{60}2 - (5 +x)}{20}]\times 10\)
8.5 = \((\frac{25 - x}2)\)
17 = 25 - x
x = 8
From equation (1),
8 + y = 15
y = 7
Hence, the values of x and y are 8 and 7 respectively.
In this formula for the median:
\(\text{Median} = l + \left[ \frac{\frac{n}{2} - \text{cf}}{f} \right] \times h\)
Where:
Given:
Using the median formula: \(28.5 = 20 + \left[ \frac{30 - (5 + x)}{20} \right] \times 10\)
Simplify inside the brackets: \(28.5 = 20 + \left[ \frac{30 - 5 - x}{20} \right] \times 10\)
\(28.5 = 20 + \left[ \frac{25 - x}{20} \right] \times 10\)
\(28.5 = 20 + \left( \frac{25 - x}{2} \right)\)
Subtract 20 from both sides: \(8.5 = \frac{25 - x}{2}\)
Multiply both sides by 2: \(17=25−x\)
Solve for x:
\( x=25−17\)
\( x=8\)
Now, using the cumulative frequency, find the value of \(x+y: \)
\(60=5+20+15+5+x+y\)
\( 60=45+x+y\)
\(60−45=x+y\)
\( 15=x+y\)
Substitute \( x=8:\)
\( y=15−x\)
\( y=15−8\)
\(y=7\)
Thus, x=8 and y=7.
Class Interval | 50-70 | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 |
---|---|---|---|---|---|---|
Number of Students | 15 | 21 | 32 | 19 | 8 | 5 |
Marks | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 |
---|---|---|---|---|---|
No. of students | 10 | 18 | 42 | 13 | 7 |
The lengths of 40 leaves of a plant are measured correct to the nearest millimetre, and the data obtained is represented in the following table :
Length (in mm) | Number of leaves |
---|---|
118 - 126 | 3 |
127 - 135 | 5 |
136 - 144 | 9 |
145 - 153 | 12 |
154 - 162 | 5 |
163 - 171 | 4 |
172 - 180 | 2 |
Find the median length of the leaves.
(Hint : The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 - 126.5, 126.5 - 135.5, . . ., 171.5 - 180.5.)
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them
Monthly consumption | Number of consumers |
---|---|
65 - 85 | 4 |
85 - 105 | 5 |
105 - 125 | 13 |
125 - 145 | 20 |
145 - 165 | 14 |
165 - 185 | 8 |
185 - 205 | 4 |
The following table gives the distribution of the life time of 400 neon lamps :
Life time (in hours) | Number of lamps |
---|---|
1500 - 2000 | 14 |
2000 - 2500 | 56 |
2500 - 3000 | 60 |
3000 - 3500 | 86 |
3500 - 4000 | 74 |
4000 - 4500 | 62 |
4500 - 5000 | 48 |
Find the median life time of a lamp.