Let the distance of point P from B be $x$ meters.
Then, distance from A = $x + 35$ meters
Since $\triangle APB$ is inscribed in a semicircle (angle in semicircle is right), use Pythagoras theorem:
\[
AB^2 = AP^2 + PB^2\\
65^2 = (x + 35)^2 + x^2\\
4225 = x^2 + 70x + 1225 + x^2 = 2x^2 + 70x + 1225
\]
Rearranging:
\[
2x^2 + 70x + 1225 - 4225 = 0\\
2x^2 + 70x - 3000 = 0\\
x^2 + 35x - 1500 = 0
\]
Solve using quadratic formula:
\[
x = \frac{-35 \pm \sqrt{35^2 + 4 \cdot 1500}}{2} = \frac{-35 \pm \sqrt{1225 + 6000}}{2}\\
x = \frac{-35 \pm \sqrt{7225}}{2} = \frac{-35 \pm 85}{2}
\]
Taking positive root:
\[
x = \frac{50}{2} = 25 \Rightarrow \text{PB} = 25\,\text{m}, \text{PA} = 60\,\text{m}
\]
Answer: Distance from A = 60 m, from B = 25 m