The following data shows the number of family members living in different bungalows of a locality:
Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
Given Data:
Number of Members | 0–2 | 2–4 | 4–6 | 6–8 | 8–10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
Step 1: Use total number of bungalows
\[ 10 + p + 60 + q + 5 = 120 \] \[ p + q = 45 \]
Step 2: Find the median class
Median corresponds to \(\frac{N}{2} = \frac{120}{2} = 60\)
Cumulative frequency:
- Up to 0–2: 10
- Up to 2–4: \(10 + p = 10 + p\)
- Up to 4–6: \(10 + p + 60 = 70 + p\)
Since median is 5 (which lies in 4–6 class), cumulative frequency before median class \(F = 10 + p\),
Class width \(h = 2\),
Frequency of median class \(f = 60\),
Median formula:
\[ \text{Median} = l + \left(\frac{\frac{N}{2} - F}{f}\right) \times h \] Where \(l\) = lower limit of median class = 4.
Substitute values:
\[ 5 = 4 + \left(\frac{60 - (10 + p)}{60}\right) \times 2 \] \[ 5 - 4 = \frac{60 - 10 - p}{60} \times 2 \] \[ 1 = \frac{50 - p}{60} \times 2 \] \[ 1 = \frac{2(50 - p)}{60} = \frac{50 - p}{30} \] \[ 50 - p = 30 \] \[ p = 20 \]
Step 3: Find \(q\)
From Step 1, \(p + q = 45\)
\[ 20 + q = 45 \implies q = 25 \]
Final Answer:
\[ p = 20, \quad q = 25 \]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Median class of the following frequency distribution will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-10 & 7 \\ \hline 10-20 & 12 \\ \hline 20-30 & 18 \\ \hline 30-40 & 15 \\ \hline 40-50 & 10 \\ \hline 50-60 & 3 \\ \hline \end{array} \]
The median class of the following frequency distribution will be:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-Interval} & \text{$0$--$10$} & \text{$10$--$20$} & \text{$20$--$30$} & \text{$30$--$40$} & \text{$40$--$50$} \\ \hline \text{Frequency} & \text{$7$} & \text{$8$} & \text{$15$} & \text{$10$} & \text{$5$} \\ \hline \end{array}\]
The population of lions was noted in different regions across the world in the following table:
Number of lions | Number of regions |
---|---|
0–100 | 2 |
100–200 | 5 |
200–300 | 9 |
300–400 | 12 |
400–500 | x |
500–600 | 20 |
600–700 | 15 |
700–800 | 10 |
800–900 | y |
900–1000 | 2 |
Total | 100 |
If the median of the given data is 525, find the values of x and y.