The following data shows the number of family members living in different bungalows of a locality:
Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
The population of lions was noted in different regions across the world in the following table:
Number of lions | Number of regions |
---|---|
0–100 | 2 |
100–200 | 5 |
200–300 | 9 |
300–400 | 12 |
400–500 | x |
500–600 | 20 |
600–700 | 15 |
700–800 | 10 |
800–900 | y |
900–1000 | 2 |
Total | 100 |
If the median of the given data is 525, find the values of x and y.
Directions: In Question Numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R).
Choose the correct option from the following:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
Assertion (A): For any two prime numbers $p$ and $q$, their HCF is 1 and LCM is $p + q$.
Reason (R): For any two natural numbers, HCF × LCM = product of numbers.
Directions: In Question Numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R).
Choose the correct option from the following:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
In an experiment of throwing a die,
Assertion (A): Event $E_1$: getting a number less than 3 and Event $E_2$: getting a number greater than 3 are complementary events.
Reason (R): If two events $E$ and $F$ are complementary events, then $P(E) + P(F) = 1$.