Question:

If the function f(x) f(x) is given by \[ f(x) = \begin{cases} \frac{\tan(a(x-1))}{\frac{x-1}{x}}, & tif0<x<1 
\frac{x^3-125}{x^2 - 25} , & \text{if } 1 \leq x \leq 4 
\frac{b^x - 1}{x}, & \text{if } x>4 \end{cases} \] is continuous in its domain, then find 6a+9b4 6a + 9b^4 .

Show Hint

When solving continuity problems, always check the limits from both sides at the points of discontinuity and equate them to ensure continuity.
Updated On: Mar 11, 2025
  • 284
  • 261
  • 214
  • 317 \bigskip
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The given function f(x) f(x) is: \[ f(x) = \begin{cases} \frac{\tan(a(x-1))}{\frac{x-1}{x}}, & \text{if } 0<x<1
\frac{x^3-125}{x^2 - 25} , & \text{if } 1 \leq x \leq 4
\frac{b^x - 1}{x}, & \text{if } x>4 \end{cases} \] To ensure continuity, we must check at x=1 x = 1 and x=4 x = 4 . --- Step 1: Continuity at x=1 x = 1 For continuity at x=1 x = 1 , we need: limx1f(x)=limx1+f(x)=f(1) \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) # Left-hand limit (x1 x \to 1^- ): limx1f(x)=limx1tan(a(x1))x1x \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{\tan(a(x-1))}{\frac{x-1}{x}} For small x1 x - 1 , using the approximation tanuu \tan u \approx u : tan(a(x1))a(x1) \tan(a(x-1)) \approx a(x-1) Thus, tan(a(x1))x1xa(x1)x1x=ax \frac{\tan(a(x-1))}{\frac{x-1}{x}} \approx \frac{a(x-1)}{\frac{x-1}{x}} = a \cdot x Taking x1 x \to 1 : limx1f(x)=a(1)=a \lim_{x \to 1^-} f(x) = a(1) = a # Right-hand limit and f(1) f(1) : f(1)=131251225=1125125=12424=316 f(1) = \frac{1^3 - 125}{1^2 - 25} = \frac{1 - 125}{1 - 25} = \frac{-124}{-24} = \frac{31}{6} Equating limits: a=316 a = \frac{31}{6} --- Step 2: Continuity at x=4 x = 4 For continuity at x=4 x = 4 : limx4f(x)=limx4+f(x)=f(4) \lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4) # Left-hand limit (x4 x \to 4^- ) and f(4) f(4) : f(4)=431254225=641251625=619=619 f(4) = \frac{4^3 - 125}{4^2 - 25} = \frac{64 - 125}{16 - 25} = \frac{-61}{-9} = \frac{61}{9} # Right-hand limit (x4+ x \to 4^+ ): limx4+bx1x=b414 \lim_{x \to 4^+} \frac{b^x - 1}{x} = \frac{b^4 - 1}{4} Equating: b414=619 \frac{b^4 - 1}{4} = \frac{61}{9} Solving for b b : b41=2449 b^4 - 1 = \frac{244}{9} b4=2539 b^4 = \frac{253}{9} b=(2539)14 b = \left(\frac{253}{9}\right)^{\frac{1}{4}} --- Step 3: Compute 6a+9b4 6a + 9b^4 6a+9b4=6×316+9×2539 6a + 9b^4 = 6 \times \frac{31}{6} + 9 \times \frac{253}{9} =31+253=284 = 31 + 253 = 284 --- Final Answer: 284 \boxed{284} \bigskip
Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions