The given function \( f(x) \) is:
\[
f(x) =
\begin{cases}
\frac{\tan(a(x-1))}{\frac{x-1}{x}}, & \text{if } 0<x<1
\frac{x^3-125}{x^2 - 25} , & \text{if } 1 \leq x \leq 4
\frac{b^x - 1}{x}, & \text{if } x>4
\end{cases}
\]
To ensure continuity, we must check at \( x = 1 \) and \( x = 4 \).
---
Step 1: Continuity at \( x = 1 \)
For continuity at \( x = 1 \), we need:
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)
\]
# Left-hand limit (\( x \to 1^- \)):
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{\tan(a(x-1))}{\frac{x-1}{x}}
\]
For small \( x - 1 \), using the approximation \( \tan u \approx u \):
\[
\tan(a(x-1)) \approx a(x-1)
\]
Thus,
\[
\frac{\tan(a(x-1))}{\frac{x-1}{x}} \approx \frac{a(x-1)}{\frac{x-1}{x}} = a \cdot x
\]
Taking \( x \to 1 \):
\[
\lim_{x \to 1^-} f(x) = a(1) = a
\]
# Right-hand limit and \( f(1) \):
\[
f(1) = \frac{1^3 - 125}{1^2 - 25} = \frac{1 - 125}{1 - 25} = \frac{-124}{-24} = \frac{31}{6}
\]
Equating limits:
\[
a = \frac{31}{6}
\]
---
Step 2: Continuity at \( x = 4 \)
For continuity at \( x = 4 \):
\[
\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4)
\]
# Left-hand limit (\( x \to 4^- \)) and \( f(4) \):
\[
f(4) = \frac{4^3 - 125}{4^2 - 25} = \frac{64 - 125}{16 - 25} = \frac{-61}{-9} = \frac{61}{9}
\]
# Right-hand limit (\( x \to 4^+ \)):
\[
\lim_{x \to 4^+} \frac{b^x - 1}{x} = \frac{b^4 - 1}{4}
\]
Equating:
\[
\frac{b^4 - 1}{4} = \frac{61}{9}
\]
Solving for \( b \):
\[
b^4 - 1 = \frac{244}{9}
\]
\[
b^4 = \frac{253}{9}
\]
\[
b = \left(\frac{253}{9}\right)^{\frac{1}{4}}
\]
---
Step 3: Compute \( 6a + 9b^4 \)
\[
6a + 9b^4 = 6 \times \frac{31}{6} + 9 \times \frac{253}{9}
\]
\[
= 31 + 253 = 284
\]
---
Final Answer:
\[
\boxed{284}
\]
\bigskip