The area of the region is given by:
\[\text{Area} = \int_1^2 \left( \frac{1}{x} - \frac{a}{x^2} \right) dx\]
Evaluating this integral:
\[= \left[ \ln x + \frac{a}{x} \right]_1^2\]
\[= \ln 2 + \frac{a}{2} - a = \log_2 2 - \frac{1}{7}\]
Equating and solving for \( a \):
\[-\frac{a}{2} = -\frac{1}{7}\]
\[a = \frac{2}{7}\]
Now, calculating \( 7a - 3 \):
\[7a = 2\]
\[7a - 3 = -1\]
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to: