Step 1: Understanding the Concept
This problem involves evaluating expressions with inverse hyperbolic functions ($\text{Sinh}^{-1}, \text{Cosh}^{-1}$) and then using the result in an inverse trigonometric function ($\text{Tan}^{-1}$). We need the logarithmic definitions of the inverse hyperbolic functions.
Step 2: Key Formula or Approach
The logarithmic forms of the inverse hyperbolic functions are:
1. $\text{Sinh}^{-1}x = \log(x + \sqrt{x^2+1})$
2. $\text{Cosh}^{-1}y = \log(y + \sqrt{y^2-1})$ for $y \ge 1$.
We are given the value of these functions, so we can set up equations to solve for $x$ and $y$.
Step 3: Detailed Explanation
We are given:
$\text{Sinh}^{-1}x = \log(1+\sqrt{2})$
$\text{Cosh}^{-1}y = \log(1+\sqrt{2})$
Solving for x:
Using the formula for $\text{Sinh}^{-1}x$:
\[ \log(x + \sqrt{x^2+1}) = \log(1+\sqrt{2}) \]
By comparing the arguments of the logarithm:
\[ x + \sqrt{x^2+1} = 1+\sqrt{2} \]
Let's identify the form. If $x=1$, then $1+\sqrt{1^2+1} = 1+\sqrt{2}$.
So, $x=1$.
Solving for y:
Using the formula for $\text{Cosh}^{-1}y$:
\[ \log(y + \sqrt{y^2-1}) = \log(1+\sqrt{2}) \]
By comparing the arguments of the logarithm:
\[ y + \sqrt{y^2-1} = 1+\sqrt{2} \]
We need to solve for $y$.
\[ \sqrt{y^2-1} = (1+\sqrt{2}) - y \]
Square both sides:
\[ y^2-1 = (1+\sqrt{2})^2 - 2y(1+\sqrt{2}) + y^2 \]
\[ y^2-1 = (1+2+2\sqrt{2}) - 2y(1+\sqrt{2}) + y^2 \]
\[ -1 = 3+2\sqrt{2} - 2y(1+\sqrt{2}) \]
\[ 2y(1+\sqrt{2}) = 4+2\sqrt{2} = 2(2+\sqrt{2}) \]
\[ y(1+\sqrt{2}) = 2+\sqrt{2} = \sqrt{2}(\sqrt{2}+1) \]
\[ y = \sqrt{2} \]
Calculate the final expression:
We need to find $\text{Tan}^{-1}(x+y)$.
We found $x=1$ and $y=\sqrt{2}$.
So, $x+y = 1+\sqrt{2}$.
The expression is $\text{Tan}^{-1}(1+\sqrt{2})$.
We know that $\tan(75^\circ) = \tan(45^\circ+30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1-\tan 45^\circ \tan 30^\circ} = \frac{1+1/\sqrt{3}}{1-1/\sqrt{3}} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$.
Rationalizing: $\frac{(\sqrt{3}+1)^2}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3+1+2\sqrt{3}}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}$.
This is not $1+\sqrt{2}$. Let me check the value of $\tan(67.5^\circ)$.
$\tan(67.5^\circ) = \tan(135^\circ/2) = \frac{1-\cos 135^\circ}{\sin 135^\circ} = \frac{1-(-1/\sqrt{2})}{1/\sqrt{2}} = \frac{1+1/\sqrt{2}}{1/\sqrt{2}} = \sqrt{2}+1$.
So, $\text{Tan}^{-1}(1+\sqrt{2}) = 67.5^\circ$.
This matches one of the likely options from the OCR ($67\frac{1}{2}^\circ$).
Step 4: Final Answer
We found $x=1$ and $y=\sqrt{2}$. The expression to evaluate is $\text{Tan}^{-1}(1+\sqrt{2})$. The value of $\tan(67.5^\circ)$ is $1+\sqrt{2}$. Therefore, $\text{Tan}^{-1}(1+\sqrt{2}) = 67.5^\circ$.