$\frac{1}{2}\log\left(\frac{5}{3}\right)$
We are given the following equations:
We are tasked with finding $\tanh^{-1}(x - y)$.
We start by recalling the definitions of inverse hyperbolic functions:
From the given equation $\sinh^{-1}(x) = \log 3$, we can deduce:
$x = \sinh(\log 3)$
Using the identity for $\sinh(z)$, we have:
$\sinh(\log 3) = \frac{e^{\log 3} - e^{-\log 3}}{2} = \frac{3 - \frac{1}{3}}{2} = \frac{\frac{9}{3} - \frac{1}{3}}{2} = \frac{8}{6} = \frac{4}{3}$
Thus, $x = \frac{4}{3}$.
Next, from the equation $\cosh^{-1}(y) = \log\left(\frac{3}{2}\right)$, we can deduce:
$y = \cosh\left(\log\left(\frac{3}{2}\right)\right)$
Using the identity for $\cosh(z)$, we have:
$\cosh(\log a) = \frac{a + \frac{1}{a}}{2}$
Thus:
$y = \cosh\left(\log\left(\frac{3}{2}\right)\right) = \frac{\frac{3}{2} + \frac{2}{3}}{2} = \frac{\frac{9}{6} + \frac{4}{6}}{2} = \frac{\frac{13}{6}}{2} = \frac{13}{12}$
Therefore, $y = \frac{13}{12}$.
Now that we have $x = \frac{4}{3}$ and $y = \frac{13}{12}$, we compute:
$x - y = \frac{4}{3} - \frac{13}{12}$
To subtract these fractions, we first find a common denominator:
$x - y = \frac{16}{12} - \frac{13}{12} = \frac{3}{12} = \frac{1}{4}$
Thus, $x - y = \frac{1}{4}$.
We are asked to find $\tanh^{-1}(x - y)$, which is $\tanh^{-1}\left(\frac{1}{4}\right)$. Recall that:
$\tanh^{-1}(z) = \frac{1}{2} \log\left(\frac{1 + z}{1 - z}\right)$
Applying this formula:
$\tanh^{-1}\left(\frac{1}{4}\right) = \frac{1}{2} \log\left(\frac{1 + \frac{1}{4}}{1 - \frac{1}{4}}\right) = \frac{1}{2} \log\left(\frac{\frac{5}{4}}{\frac{3}{4}}\right) = \frac{1}{2} \log\left(\frac{5}{3}\right)$
The final answer is $\frac{1}{2} \log\left(\frac{5}{3}\right)$.
The logic gate equivalent to the combination of logic gates shown in the figure is