$\frac{1}{2}\log\left(\frac{5}{3}\right)$
We are given the following equations:
We are tasked with finding $\tanh^{-1}(x - y)$.
We start by recalling the definitions of inverse hyperbolic functions:
From the given equation $\sinh^{-1}(x) = \log 3$, we can deduce:
$x = \sinh(\log 3)$
Using the identity for $\sinh(z)$, we have:
$\sinh(\log 3) = \frac{e^{\log 3} - e^{-\log 3}}{2} = \frac{3 - \frac{1}{3}}{2} = \frac{\frac{9}{3} - \frac{1}{3}}{2} = \frac{8}{6} = \frac{4}{3}$
Thus, $x = \frac{4}{3}$.
Next, from the equation $\cosh^{-1}(y) = \log\left(\frac{3}{2}\right)$, we can deduce:
$y = \cosh\left(\log\left(\frac{3}{2}\right)\right)$
Using the identity for $\cosh(z)$, we have:
$\cosh(\log a) = \frac{a + \frac{1}{a}}{2}$
Thus:
$y = \cosh\left(\log\left(\frac{3}{2}\right)\right) = \frac{\frac{3}{2} + \frac{2}{3}}{2} = \frac{\frac{9}{6} + \frac{4}{6}}{2} = \frac{\frac{13}{6}}{2} = \frac{13}{12}$
Therefore, $y = \frac{13}{12}$.
Now that we have $x = \frac{4}{3}$ and $y = \frac{13}{12}$, we compute:
$x - y = \frac{4}{3} - \frac{13}{12}$
To subtract these fractions, we first find a common denominator:
$x - y = \frac{16}{12} - \frac{13}{12} = \frac{3}{12} = \frac{1}{4}$
Thus, $x - y = \frac{1}{4}$.
We are asked to find $\tanh^{-1}(x - y)$, which is $\tanh^{-1}\left(\frac{1}{4}\right)$. Recall that:
$\tanh^{-1}(z) = \frac{1}{2} \log\left(\frac{1 + z}{1 - z}\right)$
Applying this formula:
$\tanh^{-1}\left(\frac{1}{4}\right) = \frac{1}{2} \log\left(\frac{1 + \frac{1}{4}}{1 - \frac{1}{4}}\right) = \frac{1}{2} \log\left(\frac{\frac{5}{4}}{\frac{3}{4}}\right) = \frac{1}{2} \log\left(\frac{5}{3}\right)$
The final answer is $\frac{1}{2} \log\left(\frac{5}{3}\right)$.
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)
If
\[ \sin \theta + 2 \cos \theta = 1 \]
and
\[ \theta \text{ lies in the 4\textsuperscript{th} quadrant (not on coordinate axes), then } 7 \cos \theta + 6 \sin \theta =\ ? \]