We are given that \( \alpha = \log_e(2 + \sqrt{3}) \).
Using the following standard identities:
\[
\cosh \alpha = \frac{e^\alpha + e^{-\alpha}}{2}, \quad \sinh \alpha = \frac{e^\alpha - e^{-\alpha}}{2}
\]
\[
\tanh \alpha = \frac{\sinh \alpha}{\cosh \alpha}, \quad \coth \alpha = \frac{\cosh \alpha}{\sinh \alpha}
\]
We can substitute these into the given expression:
\[
\frac{\cosh \alpha + \sinh \alpha}{1 - \tanh \alpha} + \frac{1}{1 - \coth \alpha} = 2 + \sqrt{3}
\]
Thus, the correct answer is \( 2 + \sqrt{3} \), which corresponds to option (4).