We are given that:
\[
\tan \theta + \sin \theta = m \quad \text{and} \quad \tan \theta - \sin \theta = n
\]
Now, \( m^2 - n^2 \) is a difference of squares, so we can use the identity \( m^2 - n^2 = (m + n)(m - n) \):
\[
m^2 - n^2 = (\tan \theta + \sin \theta + \tan \theta - \sin \theta)(\tan \theta + \sin \theta - \tan \theta + \sin \theta)
\]
Simplifying:
\[
m^2 - n^2 = (2 \tan \theta) \cdot (2 \sin \theta)
\]
\[
m^2 - n^2 = 4 \cdot \tan \theta \cdot \sin \theta
\]
Thus, the correct answer is \( 4mn \).