1. Rewrite the given equation:
\[
10 \sin^4 \theta + 15 \cos^4 \theta = 6
\]
\[
10 (\sin^2 \theta)^2 + 15 (1 - \sin^2 \theta)^2 = 6
\]
2. Let $u = \sin^2 \theta$:
\[
10u^2 + 15(1 - u)^2 = 6
\]
\[
10u^2 + 15(1 - 2u + u^2) = 6
\]
\[
10u^2 + 15 - 30u + 15u^2 = 6
\]
\[
25u^2 - 30u + 9 = 0
\]
3. Solve the quadratic equation:
\[
u = \frac{30 \pm \sqrt{900 - 900}}{50} = \frac{30 \pm 0}{50} = \frac{3}{5}
\]
\[
\sin^2 \theta = \frac{3}{5}, \quad \cos^2 \theta = \frac{2}{5}
\]
4. Calculate the given expression:
\[
\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta} = \frac{27 \left( \frac{5}{3} \right)^3 + 8 \left( \frac{5}{2} \right)^3}{16 \left( \frac{5}{2} \right)^4}
\]
\[
= \frac{27 \cdot \frac{125}{27} + 8 \cdot \frac{125}{8}}{16 \cdot \frac{625}{16}} = \frac{125 + 125}{625} = \frac{250}{625} = \frac{2}{5}
\]
Therefore, the correct answer is (1) $\frac{2}{5}$.