If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
Given: \(10\sin^4\theta + 15\cos^4\theta = 6\). We must evaluate \[ \frac{27\csc^6\theta + 8\sec^6\theta}{16\sec^8\theta}. \]
Use \(\sin^2\theta = x\) so that \(\cos^2\theta = 1-x\). Solve the resulting quadratic to find \(x\). Then compute \(\csc^2\theta = 1/x\) and \(\sec^2\theta = 1/(1-x)\) to evaluate the expression.
Step 1: Put \(x=\sin^2\theta\). Then \(\cos^2\theta=1-x\) and the given equation becomes:
\[ 10x^2 + 15(1-x)^2 = 6 \] \[ 10x^2 + 15(1-2x+x^2) = 6 \Rightarrow 25x^2 - 30x + 9 = 0. \]Step 2: Solve the quadratic:
\[ \Delta = (-30)^2 - 4\cdot 25 \cdot 9 = 900 - 900 = 0 \Rightarrow x=\frac{-(-30)}{2\cdot 25}=\frac{30}{50}=\frac{3}{5}. \] \[ \therefore \sin^2\theta=\frac{3}{5},\quad \cos^2\theta=\frac{2}{5}. \]Step 3: Compute \(\csc^2\theta\) and \(\sec^2\theta\):
\[ \csc^2\theta=\frac{1}{\sin^2\theta}=\frac{5}{3}\Rightarrow \csc^6\theta=\left(\frac{5}{3}\right)^3=\frac{125}{27}, \] \[ \sec^2\theta=\frac{1}{\cos^2\theta}=\frac{5}{2}\Rightarrow \sec^6\theta=\left(\frac{5}{2}\right)^3=\frac{125}{8},\quad \sec^8\theta=\left(\frac{5}{2}\right)^4=\frac{625}{16}. \]Step 4: Evaluate the required expression:
\[ \frac{27\csc^6\theta + 8\sec^6\theta}{16\sec^8\theta} =\frac{27\cdot \frac{125}{27} + 8 \cdot \frac{125}{8}}{16\cdot \frac{625}{16}} =\frac{125+125}{625}=\frac{250}{625}=\frac{2}{5}. \]\(\displaystyle \frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}=\frac{2}{5}\).
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
