If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
Given: \(10\sin^4\theta + 15\cos^4\theta = 6\). We must evaluate \[ \frac{27\csc^6\theta + 8\sec^6\theta}{16\sec^8\theta}. \]
Use \(\sin^2\theta = x\) so that \(\cos^2\theta = 1-x\). Solve the resulting quadratic to find \(x\). Then compute \(\csc^2\theta = 1/x\) and \(\sec^2\theta = 1/(1-x)\) to evaluate the expression.
Step 1: Put \(x=\sin^2\theta\). Then \(\cos^2\theta=1-x\) and the given equation becomes:
\[ 10x^2 + 15(1-x)^2 = 6 \] \[ 10x^2 + 15(1-2x+x^2) = 6 \Rightarrow 25x^2 - 30x + 9 = 0. \]Step 2: Solve the quadratic:
\[ \Delta = (-30)^2 - 4\cdot 25 \cdot 9 = 900 - 900 = 0 \Rightarrow x=\frac{-(-30)}{2\cdot 25}=\frac{30}{50}=\frac{3}{5}. \] \[ \therefore \sin^2\theta=\frac{3}{5},\quad \cos^2\theta=\frac{2}{5}. \]Step 3: Compute \(\csc^2\theta\) and \(\sec^2\theta\):
\[ \csc^2\theta=\frac{1}{\sin^2\theta}=\frac{5}{3}\Rightarrow \csc^6\theta=\left(\frac{5}{3}\right)^3=\frac{125}{27}, \] \[ \sec^2\theta=\frac{1}{\cos^2\theta}=\frac{5}{2}\Rightarrow \sec^6\theta=\left(\frac{5}{2}\right)^3=\frac{125}{8},\quad \sec^8\theta=\left(\frac{5}{2}\right)^4=\frac{625}{16}. \]Step 4: Evaluate the required expression:
\[ \frac{27\csc^6\theta + 8\sec^6\theta}{16\sec^8\theta} =\frac{27\cdot \frac{125}{27} + 8 \cdot \frac{125}{8}}{16\cdot \frac{625}{16}} =\frac{125+125}{625}=\frac{250}{625}=\frac{2}{5}. \]\(\displaystyle \frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}=\frac{2}{5}\).
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.