We are given that:
\[
\tan(A + B) = 1 \quad \text{and} \quad \tan(A - B) = \frac{1}{\sqrt{3}}.
\]
Step 1: Solve for \( A + B \).
We know that \( \tan 45^\circ = 1 \), so from \( \tan(A + B) = 1 \), we have:
\[
A + B = 45^\circ.
\]
Step 2: Solve for \( A - B \).
We know that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \), so from \( \tan(A - B) = \frac{1}{\sqrt{3}} \), we have:
\[
A - B = 30^\circ.
\]
Step 3: Solve the system of equations.
We now have the system of equations:
\[
A + B = 45^\circ \quad \text{and} \quad A - B = 30^\circ.
\]
Add the two equations:
\[
(A + B) + (A - B) = 45^\circ + 30^\circ \quad \implies \quad 2A = 75^\circ \quad \implies \quad A = 37.5^\circ.
\]
Substitute \( A = 37.5^\circ \) into \( A + B = 45^\circ \):
\[
37.5^\circ + B = 45^\circ \quad \implies \quad B = 7.5^\circ.
\]
Conclusion:
The values of \( A \) and \( B \) are \( A = 37.5^\circ \) and \( B = 7.5^\circ \).