Step 1: Identify the roots of the quadratic equation
The roots are given as \( \tan 15^\circ \) and \( \tan 30^\circ \).
Step 2: Recall values of the tangents
\[
\tan 15^\circ = 2 - \sqrt{3}, \quad \tan 30^\circ = \frac{1}{\sqrt{3}}
\]
Step 3: Use the relationships for roots of quadratic
For the equation \( x^2 + px + q = 0 \), the sum and product of roots are:
\[
\text{Sum of roots} = -p = \tan 15^\circ + \tan 30^\circ
\]
\[
\text{Product of roots} = q = \tan 15^\circ \times \tan 30^\circ
\]
Step 4: Calculate sum and product
Sum:
\[
\tan 15^\circ + \tan 30^\circ = (2 - \sqrt{3}) + \frac{1}{\sqrt{3}} = 2 - \sqrt{3} + \frac{1}{\sqrt{3}}
\]
Product:
\[
\tan 15^\circ \times \tan 30^\circ = (2 - \sqrt{3}) \times \frac{1}{\sqrt{3}} = \frac{2 - \sqrt{3}}{\sqrt{3}}
\]
Step 5: Calculate \( pq \)
\[
p = -(\tan 15^\circ + \tan 30^\circ) = -\left(2 - \sqrt{3} + \frac{1}{\sqrt{3}}\right)
\]
\[
q = \frac{2 - \sqrt{3}}{\sqrt{3}}
\]
Therefore,
\[
pq = -\left(2 - \sqrt{3} + \frac{1}{\sqrt{3}}\right) \times \frac{2 - \sqrt{3}}{\sqrt{3}}
\]
Step 6: Simplify \( pq \)
Multiply numerator terms:
\[
(2 - \sqrt{3}) \times \left(2 - \sqrt{3} + \frac{1}{\sqrt{3}}\right) = (2 - \sqrt{3})(2 - \sqrt{3}) + (2 - \sqrt{3}) \times \frac{1}{\sqrt{3}}
\]
Calculate each:
\[
(2 - \sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3}
\]
\[
(2 - \sqrt{3}) \times \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} - 1
\]
Sum:
\[
7 - 4\sqrt{3} + \frac{2}{\sqrt{3}} - 1 = 6 - 4\sqrt{3} + \frac{2}{\sqrt{3}}
\]
Hence,
\[
pq = - \frac{6 - 4\sqrt{3} + \frac{2}{\sqrt{3}}}{\sqrt{3}} = -\left(\frac{6}{\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{3}} + \frac{2}{\sqrt{3} \times \sqrt{3}}\right)
\]
Simplify each term:
\[
\frac{6}{\sqrt{3}} = 2\sqrt{3}, \quad \frac{4\sqrt{3}}{\sqrt{3}} = 4, \quad \frac{2}{3}
\]
So,
\[
pq = -(2\sqrt{3} - 4 + \frac{2}{3}) = -\left(2\sqrt{3} - \frac{10}{3}\right) = \frac{10}{3} - 2\sqrt{3}
\]
Final Answer: \( \frac{10 - 6\sqrt{3}}{3} \)