Given the function:
\[
f(x) = \frac{x}{\sqrt{1 + x^2}}
\]
We need to find \( (f \circ f)(x) \), which means substituting \( f(x) \) into itself. That is:
\[
(f \circ f)(x) = f(f(x))
\]
Substitute \( f(x) = \frac{x}{\sqrt{1 + x^2}} \) into the function \( f(x) \):
\[
f(f(x)) = f\left( \frac{x}{\sqrt{1 + x^2}} \right)
\]
Now, substitute \( \frac{x}{\sqrt{1 + x^2}} \) into the expression for \( f(x) \):
\[
f\left( \frac{x}{\sqrt{1 + x^2}} \right) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{1 + \left( \frac{x}{\sqrt{1 + x^2}} \right)^2}}
\]
Simplifying the denominator:
\[
\left( \frac{x}{\sqrt{1 + x^2}} \right)^2 = \frac{x^2}{1 + x^2}
\]
Thus, the denominator becomes:
\[
\sqrt{1 + \frac{x^2}{1 + x^2}} = \sqrt{\frac{1 + x^2 + x^2}{1 + x^2}} = \sqrt{\frac{1 + 3x^2}{1 + x^2}}
\]
So, the function \( f(f(x)) \) simplifies to:
\[
f(f(x)) = \frac{x}{\sqrt{1 + 3x^2}}
\]
Thus, the correct answer is \( \frac{x}{\sqrt{1 + 3x^2}} \).