If \( T = 2\pi \sqrt{\frac{L}{g}} \), \( g \) is a constant and the relative error in \( T \) is \( k \) times to the percentage error in \( L \), then \( \frac{1}{k} = \) ?
Step 1: Expressing the Relative Error
The given equation for the time period of a simple pendulum is: \[ T = 2\pi \sqrt{\frac{L}{g}}. \] Taking the natural logarithm on both sides: \[ \ln T = \ln \left( 2\pi \right) + \frac{1}{2} \ln L - \frac{1}{2} \ln g. \] Differentiating both sides: \[ \frac{dT}{T} = \frac{1}{2} \frac{dL}{L}. \] This implies the relative error in \( T \): \[ \frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta L}{L}. \] Step 2: Finding the Value of \( k \)
The problem states that the relative error in \( T \) is \( k \) times the percentage error in \( L \): \[ \frac{\Delta T}{T} = k \times \frac{\Delta L}{L}. \] Comparing with the earlier result: \[ k = \frac{1}{2}. \] Thus, \[ \frac{1}{k} = 2. \] Final Answer: \( \boxed{2} \).
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
If \(3A = \begin{bmatrix} 1 & 2 & 2 \\[0.3em] 2 & 1 & -2 \\[0.3em] a & 2 & b \end{bmatrix}\) and \(AA^T = I\), then\(\frac{a}{b} + \frac{b}{a} =\):
\(\begin{vmatrix} a+b+2c & a & b \\[0.3em] c & b+c+2c & b \\[0.3em] c & a & c+a2b \end{vmatrix}\)