Given:
Number of trials \(n=6\),
Mean = \(np\),
Variance = \(np(1-p)\),
and
\[
\text{Mean} - \text{Variance} = \frac{27}{8}.
\]
Calculate:
\[
np - np(1-p) = np^2 = \frac{27}{8}.
\]
Let \(np^2 = \frac{27}{8}\).
Since \(n=6\),
\[
6p^2 = \frac{27}{8} \implies p^2 = \frac{27}{48} = \frac{9}{16} \implies p = \frac{3}{4}.
\]
Calculate probability of at most 2 successes:
\[
P(X \leq 2) = \sum_{k=0}^2 \binom{6}{k} p^k (1-p)^{6-k}.
\]
Here, \(p = \frac{3}{4}\), \(q = \frac{1}{4}\).
Calculate each term:
\(k=0\):
\[
\binom{6}{0} \left(\frac{3}{4}\right)^0 \left(\frac{1}{4}\right)^6 = 1 \times 1 \times \frac{1}{4^6} = \frac{1}{4^6}.
\]
\(k=1\):
\[
\binom{6}{1} \left(\frac{3}{4}\right)^1 \left(\frac{1}{4}\right)^5 = 6 \times \frac{3}{4} \times \frac{1}{4^5} = \frac{18}{4^6}.
\]
\(k=2\):
\[
\binom{6}{2} \left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right)^4 = 15 \times \frac{9}{16} \times \frac{1}{4^4} = \frac{135}{4^6}.
\]
Sum:
\[
\frac{1 + 18 + 135}{4^6} = \frac{154}{4^6}.
\]