We are given:
\[
\sin 3A = \cos (A - 26^\circ).
\]
Using the identity \( \sin \theta = \cos (90^\circ - \theta) \), we can rewrite \( \sin 3A \) as:
\[
\sin 3A = \cos (90^\circ - 3A).
\]
Thus, the equation becomes:
\[
\cos (90^\circ - 3A) = \cos (A - 26^\circ).
\]
Since \( \cos \theta_1 = \cos \theta_2 \), we know that:
\[
90^\circ - 3A = A - 26^\circ.
\]
Step 1: Solve the equation.
Rearranging the terms:
\[
90^\circ + 26^\circ = 3A + A \quad \implies \quad 116^\circ = 4A \quad \implies \quad A = \frac{116^\circ}{4} = 29^\circ.
\]
Conclusion:
The value of \( A \) is \( 29^\circ \).