Given: The matrix \( p \) is the adjoint of the matrix \( A \), and we know that \( \det(A) = 4 \). We are tasked with finding \( A \).
The adjoint of a matrix \( A \), denoted \( \text{adj}(A) \) or \( p \), is related to the inverse of \( A \) by the following formula:
$$ A \cdot \text{adj}(A) = \det(A) \cdot I $$
Where \( I \) is the identity matrix. Using the given information, we have:
$$ A \cdot p = \det(A) \cdot I $$
Substituting the values we know:
$$ A \cdot \begin{bmatrix} 1 & a & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} = 4 \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $$
Thus, we have the equation:
$$ A \cdot p = 4I $$
Now, let's calculate the inverse of the matrix \( p \) to find \( A \).
Step 1: Calculate \( \text{adj}(A) \), which is given as matrix \( p \).
The matrix \( p \) is:
$$ p = \begin{bmatrix} 1 & a & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} $$
Step 2: Find the inverse of \( p \).
To find \( A \), we need to use the fact that:
$$ A = \frac{1}{\det(A)} \cdot p $$
Since \( \det(A) = 4 \), we have:
$$ A = \frac{1}{4} \cdot p $$
Substituting the values of \( p \):
$$ A = \frac{1}{4} \cdot \begin{bmatrix} 1 & a & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} $$
This gives:
$$ A = \begin{bmatrix} \frac{1}{4} & \frac{a}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{3}{4} \\ \frac{1}{2} & 1 & 1 \end{bmatrix} $$
Step 3: Calculate \( A \) and check the possible answers.
Since the determinant of \( A \) is 4, and we know the scaling factor of \( \frac{1}{4} \) applied to matrix \( p \), we check for the answer options.
After evaluating the options and working with the given constraints, we find that:
The correct answer is \( \boxed{5} \).